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CISC 3250

Systems Neuroscience ¢
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| Professor Daniel Leeds
dleeds@fordham.edu \
JMH 328A I

Systems Neuroscience

* How groups of neurons work together to
achieve intelligence

* How the nervous system
performs computations

* Requirement for the Integrative Neuroscience
major
* Elective in Computer and Information Science

Objectives

To understand information processing in
biological neural systems from computational
and anatomical perspectives

* Understand the function of key components
of the nervous system

* Understand how neurons interact with one
another

* Understand how to use computational tools to
examine neural data

Recommended student background

Prerequisite:

* Officially: CISC 2500 Data and Information
Management

* Unofficially: CISC 2500, or Bioinformatics, or
Data Mining or Computer Science |

Computer

Math .
science

Some calculus Some programming

Textbook(s)

Fundamentals of Computational
Neuroscience, Second Edition,
by Trappenberg

* Suggested

* We will focus on the ideas and study
a relatively small set of equations

Computational Cognitive Neuroscience,
by O’Reilly et al.
* Optional, alternate perspective

Website

http://storm.cis.fordham.edu/leeds/cisc3250/

Go online for
— Announcements
— Lecture slides
— Course materials/handouts
— Assignments
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Requirements

* Attendance and participation

— 1 unexcused absence allowed

— Ask and answer questions in class
* Homework: Roughly 5 across the semester
* Exams

— 2 midterms, in February and April

— 1 final, in May

* Don’t cheat

— You may discuss homeworks with other students,
but your submitted work must be your own

Matlab

Popular tool in scientific computing for:

4\

Student license for $50 on Mathworks site

* Finding patterns in data
* Plotting results
* Running simulations

Available in computers at JMH 330

Your instructor

Prof. Daniel Leeds

E-mail: dleeds@fordham.edu

Office hours: Tuesday 12-1pm, 3-4pm
Office: 328A D

computer science + psychology -> models of vision

Introducing systems and
computational neuroscience

* How groups of neurons work together to
achieve intelligence

* How the nervous system
performs computations

Levels of organization

Examples Scale
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From a psychological perspective...

What are elements
of cognition?
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Systems neuroscience

Regions of the central nervous system
associated with particular elements of cognition

* Visual object recognition

Middie Temporal. Postarior Inferior
Cortex (MT/VS) Temporal Cortex
" Pusitorm Gyrus

Intirigy Temporal v
Ventral
Stream

Systems neuroscience

Regions of the central nervous system
associated with particular elements of cognition

* Visual object recognition
* Motion planning and execution
* Learning and remembering

Computational neuroscience

Strategy used by the nervous system to solve

problems
O O &
. . . D-QA@E
* Visual object perception .3 :
through biological NEEGE
hierarchical model
”HMAX” N ! — =) *Con’\flﬁﬁ(ells
g2 eeq 7/|~««Sxmple(ells
Image [

Computational neuroscience as
“theory of the brain”

David Marr’s three levels of analysis (1982):

* Computational theory: What is the
computational goal and the strategy to achieve
it?

* Representation and algorithm: What are the
input and output for the computation, and how
do you mathematically convert input to output?

* Hardware implementation: How do the physical
components perform the computation?

Marr’s three levels for “HMAX” vision

* Computational theory: Goal is to recognize
objects
* Representation and algorithm:
— Input: Pixels of light and color
— Output: Label of object identity
— Conversion: Through combining local visual
properties
* Hardware implementation:

— Visual properties “computed” by networks of
firing neurons in object recognition pathway

Levels of organization

Examples Scale Examples
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Course outline

* Philosophy of neural modeling

* The neuron — biology and input/output behavior
* Learningin the neuron

* Neural systems and neuroanatomy

* Representations in the brain

* Perception
* Memory/learning Plus: Matlab

* Motor control programming

The neuron
* Building block of all the systems we will study
* Cell with special properties

— Soma (cell body) can have 5-100 um diameter, but
axon can stretch over 10-1000 cm in length

— Receives input from neurons through dendrites
— Sends output to neurons through axon

dendrites " NEURON
/ /
\
AN
/N
axon
/ AN
,/ " axon ending
\\

AN N
| 5 .
\ myelin sheath

cell body

Neuron membrane voltage

* Voltage difference across cell membrane
— Resting potential: ~-65 mV
— Action potential: quick upward spike in voltage

AL

A

potential (mV)

time (ms)

Example neural signals

The action potential

* Action potential begins at axon hillock and
travels down axon

Voltage-gated
Ca? channel

¢ At each axon terminal,
spike results in release
of neurotransmitters

Synaptic vescicle:

Neurotransmitter

* Neurotransmitters s 't %ae
(NTs) attach to
dendrite of another
neuron, causing voltage change in this second
neuron

Inter-neuron communication

Neuron receives input from 1000s of other neurons

* Excitatory input can increase spiking

* Inhibitory input can decrease spiking

A synapse links neuron A with neuron B

* Neuron A is pre-synaptic:
axon terminal outputs NTs

* Neuron B is post-synaptic: .=
dendrite takes NTs as input

More on neuron membrane voltage

* Given no input, membrane stays at resting
potential (~-65 mV)

Inputs:
* Excitation temporarily increases potential

* Inhibition temporarily decreases potential

Continual drive to remain at rest
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Patch clamp experiment

* Attach electrode to neuron

* Raise/drop voltage on electrode X
e
* Measure nearby voltage (with ~ “~ # e

another electrode)

input

-

Simplification of
neurophysiology
experiment 2

nearby
mamos

—
VA

More on the action potential
1. Accumulated excitation passes certain level
2. Non-linear increase in membrane voltage

3. Rapid reset

Modeling voltage over time

Equations focusing on change in voltage v
Components:

* Resting state potential (voltage) E;

* Input voltages R/

* Timet

dv(t)
dt

T = —(v(t) — E,) + RI(t)

change towards
resting state

incorporate new
input information

Simulation

* Initial voltage
* Time interval for update
* Input at each time

* Apply rule to compute new voltage at each
time

Applying dv/dt step-by-step

E;=-65mV v(Oms)=-65mV =1
RI(t)=20mV (from t=0ms to 1000ms)
time step: 10ms du(t
T 1;& ) _(w(t) = E,) + RI(E)
¢ v(10ms) = v(Oms) + mxi
dt 1000 10
=-65 + [-(-65- -65) + 20] x ——
10 1000
=-65+20x——

1000

=-64.8
. _ dv(10ms) 10
v(20ms) = v(10ms) + 0 *Tooo

=-64.8 + [-(-64.8- -65) + 20] X ——
0 1000
-65 +-0.2+20 x ——

non
o
(=
o

Changing model terms

T has inverse effect
* increase T decreases update speed
* decrease T increases update speed

RI(t) has linear effect
* increase RI(t) increases update speed
 decrease RI(t) decreases update speed



http://commons.wikimedia.org/wiki/File:Action_potential.svg
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Voltage over time: reset Below and above threshold
dv(t
PO ) — B+ RIE o
When voltage passes threshold v, voltage e
reset to Vies O ——— — — — — — S |
V(tf) =Vthresh 22 -
V(tf+5)=vres 60 | '
6 is small positive number close to 0 700 0 20 300 40 50 o 100 200 300 400 500
+15mv input +50mv input
. . resh—RI
Time to spike: t=—1,, ln%
¢\?0|tage over time Accumulating information over inputs
e du(t) AN
[}
= —(v(t) — Ey) + RI(t) ' - Az W\ :
[} / — /
45 i /velin sheath un/}./ i ‘
/ / Positive and negative weighted inputs from
55 / / /
dendrites wa added together:
60 ;’l ;"" / ‘
.‘". {; :;" 1.“' o Rl(t) = z W] aj(t)
* 0 10 20 30 40 50 60 70 80 90 100 ]
Simulated Biological jis index over dendrites; first-pass model
A Accumulating inputs Chemical level: NT receptors
0
-10

Voltage-gated
Ca? channel

20 D1 .
% A Pre-synaptic: a
20 ¢ Amount of NT released Synapic vescido
-50 D2 Post_synaptic; w Neurotransmitter <3
{ LN L]

-60 .
0 * Number of receptors in -
0 200 400 600 800 1000 dendrite membrane e
. . Neurotransmitter L3
D1 » Efficiency of receptors recaplr ~_ * * T

A 2 D
+20 +W or —w »!ég?‘[ (@
A B A mE A

* Reflect excitation or inhibition
* One NT type per synapse
e Fixed sign per NT
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Form of dendrite input

dv(t)
TT =—(v(t) —E) + RI(t)
|

| Pre-synaptic neuron spikes

| Neurotransmitter (NT) released |

NT received by post-synaptic
dendrite at time tf

{
Post-synaptic voltage rises and
then fades, a(t)

I(t) = z w;a; (t)
J

j

-50

-55 New pre-synaptic
inputs at

-60 * 34 ms
* 68 ms
¢ 100 ms

® . 135ms

-70

0 20 40 60 80 100 120 140 160

“Leaky integrate-and-fire” neuron

* Sum inputs from
dendrites (“integral”)

Rl(t) = Z W]-aj (t)
j

* Decrease voltage
. dv(t)
towards resting state ¢ Tk —(v(t) — EL) + RI(t)
(“leak”)

* Reset after passing

v(tf +8) = v,
threshold (“fire”) ( ) “

Activation function

Often non-linear relation between dendrite input

d
and axon output . 1;(tt) () — E) + g(RI(D)

RI(®) =ijaj(t) Sum inputs
7

l

gRI®) Apply (non-linear?)

transformation to input

Activation function

Function type ~;§h;:' Mathematical formula MATLAB implementation
b 'S¢

Linear / giv(x)=x
1o 1 ifx>0
Step g% (x)= /
¢ "0 elsewhere

Threshold- / g™ (x)=x Q%)
linear
Sigmoid I g (x) = ‘(\.‘p.‘_‘.

Radial-basis g5 (x) = exp(-x?)

An example sigmoid

8(2)= ”':——————————:_T/_ _____
0.8 /
L/
g(1)= _ /
Tt
g(0)= /i
0.2 1
/
ST i
g(-4): 6 -5 4 -3 -2 -1 0 1 2 3 4 5 6
h
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Tuning curves L. . .. )
8 Variations in activation functions

Some single neurons fire in response to

“verceiving” a quality in the world * Activation function has fixed shape
oot R Tuning curve of V1 neuronin cat —Sigmoid is S shape, Radial is Bell shape
60
:_150 F §50
%100 g ~ 0\ * By default, transition between 0 and 1
£ €2 J
‘lf 50 [
10 .
g " > T N ) * Some details of shape may vary
Weight [g] Orientation [degree]
— Smallest and lowest value
hAdrllan, Henry Et:L' — Location of transition between values
J Physiol 1926. J Neurophys
1974.

Neural coding Coding example
Perception, action, and other cognitive states 11 0 IE' Elevated rate.
represented by firing of neurons
+ Coding by rate: high rate of pre-synaptic 2 0 0
spiking causes post-synaptic spiking Synchrony
* Coding by spike timing: multiple pre-synaptic 31 00 0 in time
neurons spiking together causes post-synaptic
spiking 4 0 0
15 0 100 200 300 400ms
time
e . . Computing spike rate
Inhibition can be informative puting sp
Inputs of interest can produce * Add spikes over a period of time
* Below-normal spike rate
* Decreased synchrony among neurons num spikes in AT

v(t) =

AT
* Average spikes over a set of neurons

A = i 1 num spikes in N neurons
~ ATS0AT N




