

We recall information through associations with other information

• Pneumonics:

Roy G. Biv

Please Excuse My Dear Aunt Sally () Exp x / + -

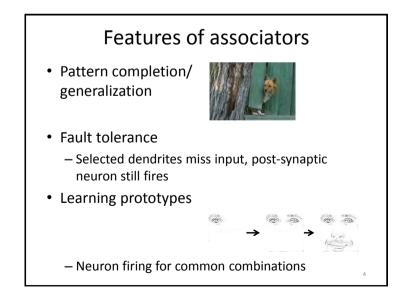
• Memories of experiences:

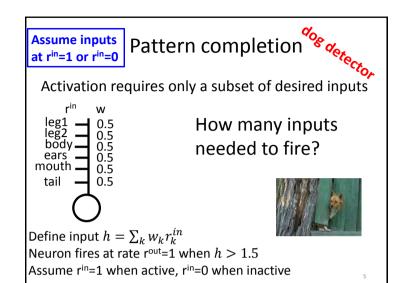
Lake -> Summer vacation 2014 Dealy -> Final exam Fall 2013

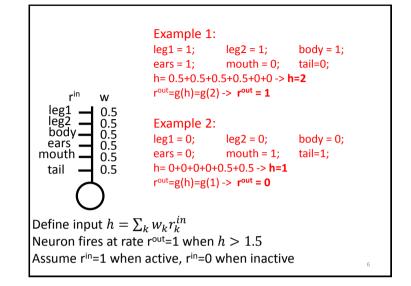
Complex objects

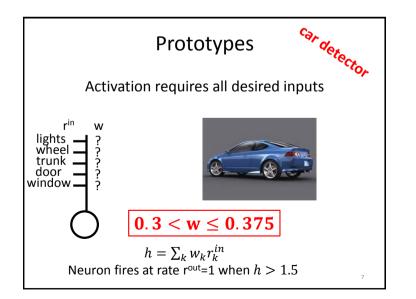
::Bark:: -> Dog, fur, happy/fear

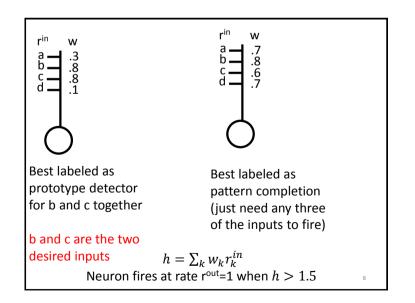
<section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

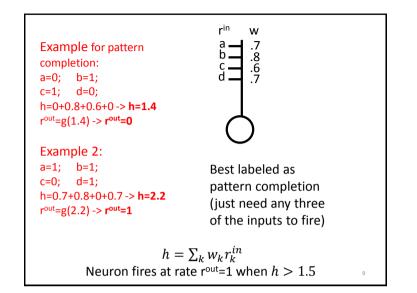


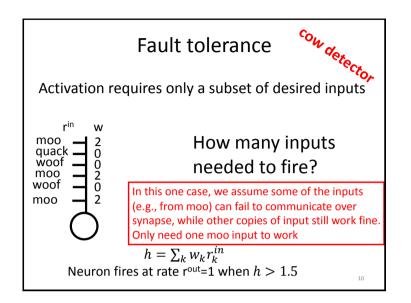


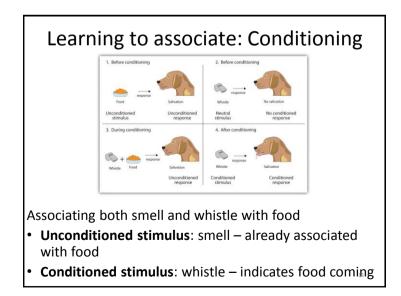


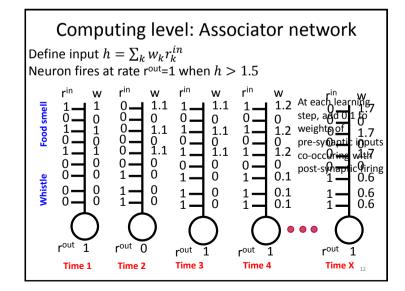


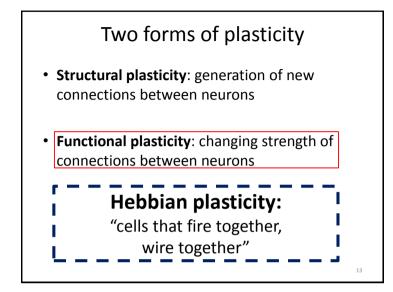






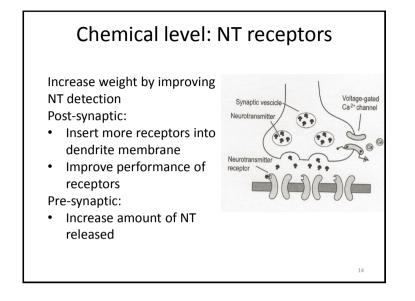


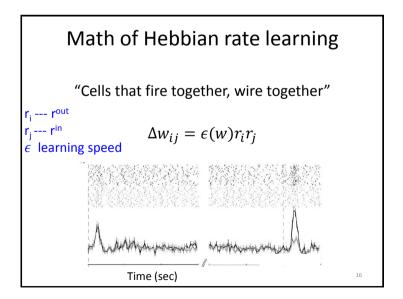




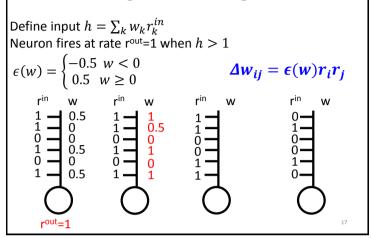
- **Computational theory:** Learn associations among sensations
- **Representation and algorithm:** Associate each sense with set of neural outputs, adjust weights on these outputs into another neuron
- Hardware implementation: Insert/remove NT receptors from dendrites

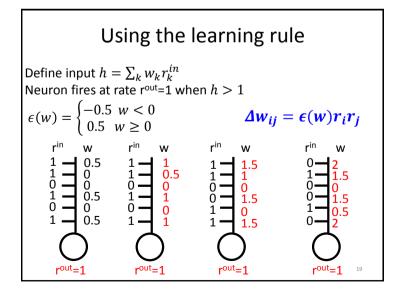
15



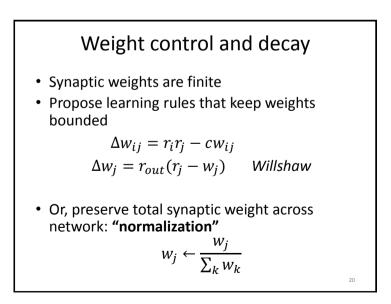


Using the learning rule

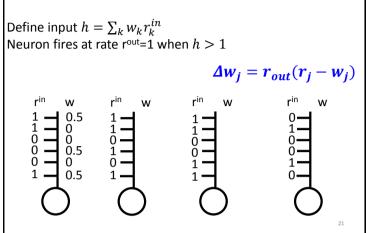




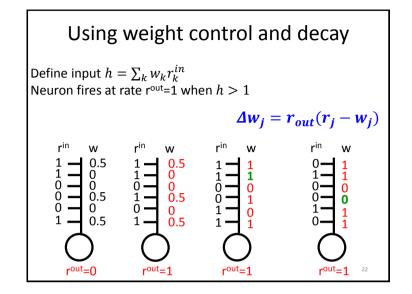
Some more math $$\begin{split} & \omega_{j}^{t=2} = \omega_{j}^{t=1} + \Delta \omega_{j}^{t=1} \\ & \Delta \omega_{j}^{t=1} = \epsilon(\omega_{j}^{t=1}) \times r_{out}^{t=1} \times r_{1}^{t=1} \\ & \omega_{1}^{t=2} = \omega_{1}^{t=1} + \Delta \omega_{1}^{t=1} \\ & = \omega_{1}^{t=1} + \epsilon(\omega_{1}^{t=1}) \times r_{out}^{t=1} \times r_{1}^{t=1} \\ & = 0.5 + \epsilon(0.5) \times 1 \times 1 = 0.5 + 0.5 = 1 \end{split}$$



Using weight control and decay



Using weight control and decay				
Define input $h = \sum_k w_k r_k^{in}$		Δw_i	$= \epsilon(w_j) r_{out} r_j$	
Neuron fires at rate r ^{out} =1 when $h > .5$				
$\epsilon(w) = \begin{cases} -0.5 \ w < 0\\ 0.5 \ w \ge 0 \end{cases}$		$w_j \leftarrow \frac{w_j}{\sum_k w_k}$		
r ⁱⁿ W 1 0.3 0 0 0 0 0 0.4	r ⁱⁿ w 111111 10101	r ⁱⁿ w 111111 100111	rin w 0100100 100100 100100 100100 100100	



	_
Hebb + normalization	
Step 1: Compute output at time t	
Step 2: Use Hebb learning based on r_{out}^{t} , w_{j}^{t} , r_{j}^{t} to find new $w_{j}^{t+1's}$	
Step 3: Divide new w_j^{t+1} 's by $\sum_k w_k^{t+1}$ so new w_j 's add to 1	
24	

