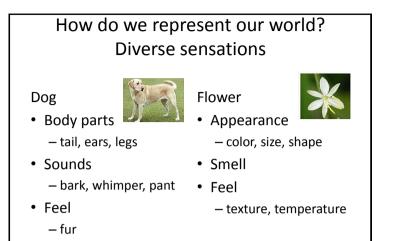
1

CISC 3250 Systems Neuroscience

Representations in the brain

Professor Daniel Leeds dleeds@fordham.edu JMH 332


How do we represent our world? One sensation, multiple levels

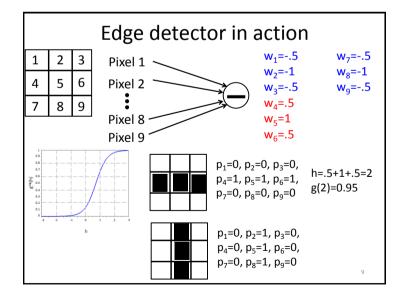
Song

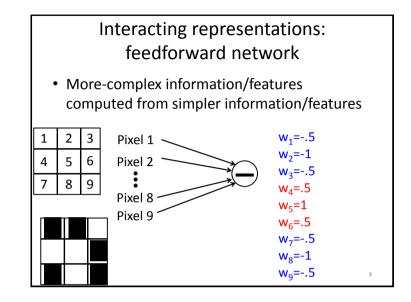
- Meaning of words
- Pitch/melody
- Rhythm
- Language
- Singer identity

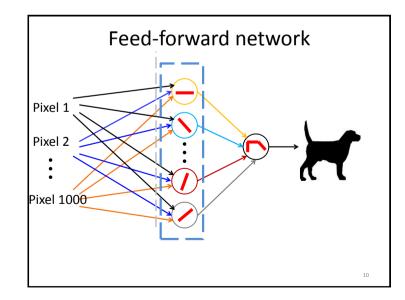
- Dance • Body part
 - arms, hands, legs • Direction
- order of moves, speed

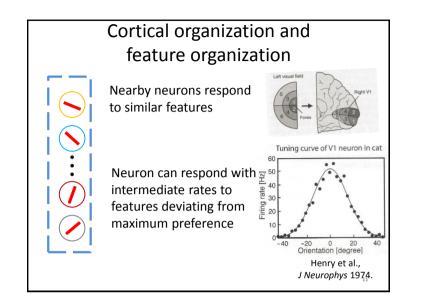
- forward, to-the-left
- Timing

We call each piece of information a "feature"

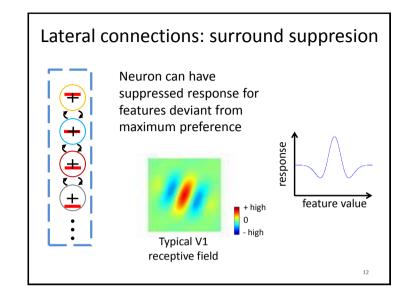


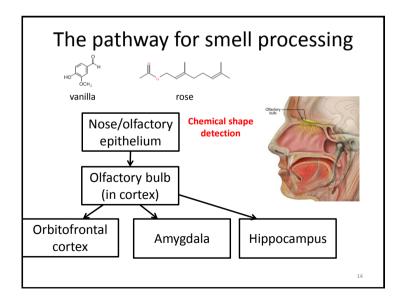

Simple outline of vision pathway

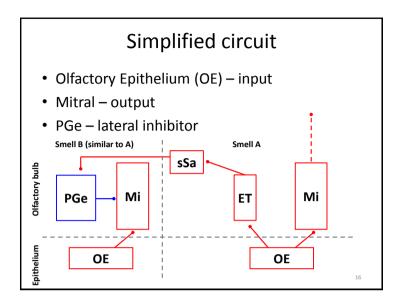

- 1. Retina: pixel detectors
- 2. Primary visual cortex (V1): edge detectors
- 3. Second-cortical layer (V2?): edge combination detectors


• • •

N. Higher-cortical layer: Full-object detectors

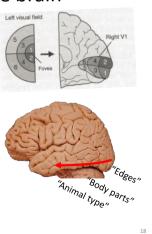


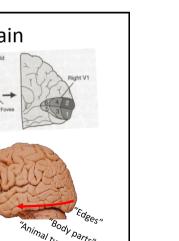


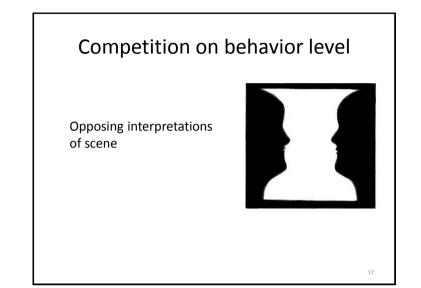

Suppression/competition with interneurons

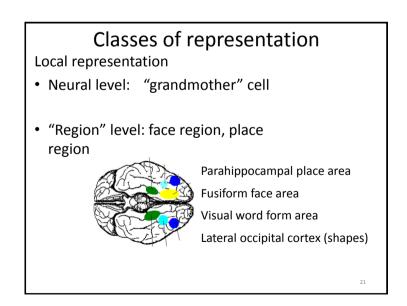
- In common cortical circuits, there are feedforward excitatory inputs and lateral inhibitory inputs
- Relative weighting achieves balance between activation and suppression

13

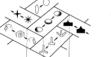





Data in the brain


 Neural location related to information encoded

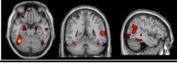
• Progression of encoding for increasingly complex concepts


Classes of representation

Fully distributed representation

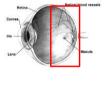
• Every neuron/region plays a part

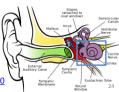
Sparsely-distributed representation

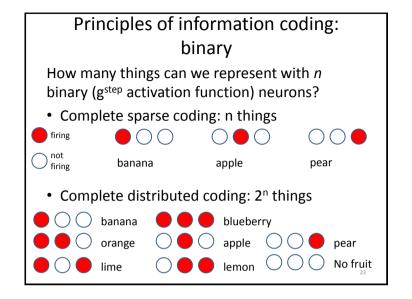

• Neural level: hyper-column for perceptual feature

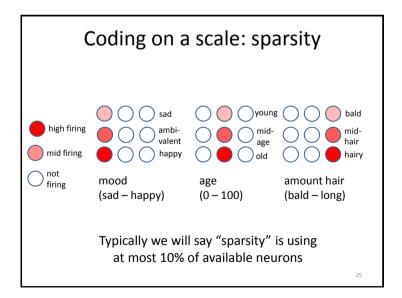
Tanaka 2003, columns of neurons for shape types in IT

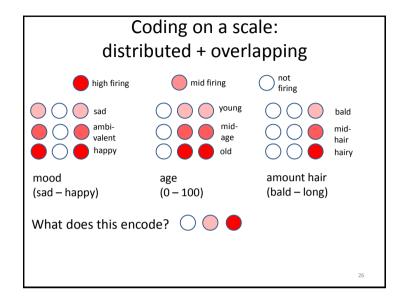
• "Region" level: face network in medial


temporal, lateral temporal, anterior parietal

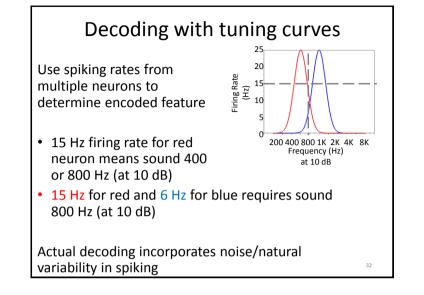


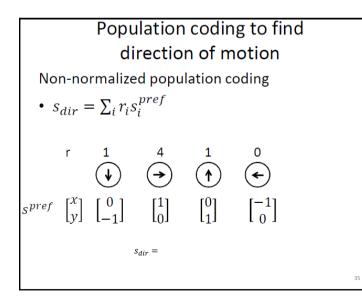

Biology of sparse coding

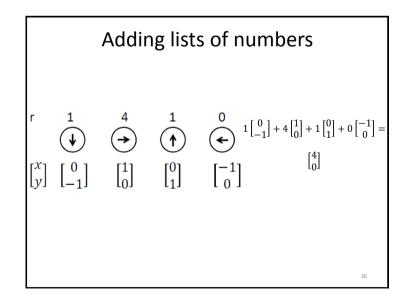

- Preserving energy higher spiking rate requires higher energy
- Representational fan-out
 - ~1 million neurons in retina ->
 ~140 million neurons in V1 (primary visual cortex)
 - ~50,000 neurons in cochlea ->
 1.6 million neurons in A1 (primary auditory cortex)

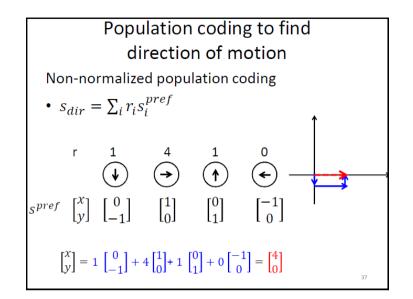

http://www.plosbiology.org/article/info:doi/10

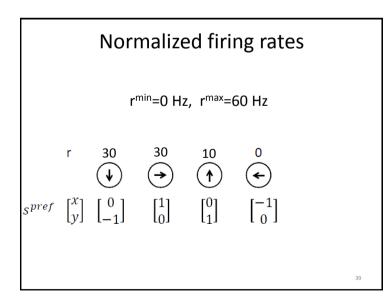
Coding on a scale: distributed + overlapping						
Responses for each property add together						
.5 0 .5 – neutral	0 .1 .1 – young 0 .5 .5 – middle 0 .9 .9 – old	0 0 .5 – middle				
mood (sad – happy)	age (0 – 100)	amount hair (bald – long)				
What does this encode? $0.4.8$ $e^{ix^{0}}v^{0}v^{1}v^{0}v^{1}v^{0}v^{0}}$ Very sad: contributes: $0 \times [1 \ 0 \ 1] = 0 \ 0 \ 0$ Middle-age: contributes .4 x [0 1 1] = 0 .4 .4Middle-hair: contributes .4 x [0 0 1] = 0 0 .4Summing together: $0.4.8$						

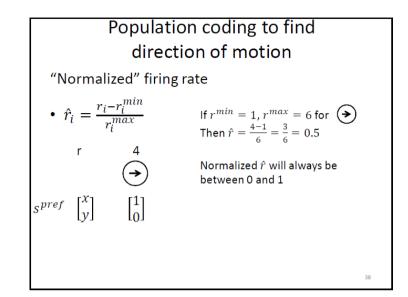

Responses for each property add together			
.5 0 .5 – neutral	0 .1 .1 – young 0 .5 .5 – middle 0 .9 .9 – old	0 0 .5 – middle	
mood (sad – happy)	age (0 – 100)	amount hair (bald – long)	
What does this	s encode? 0.4.	8	

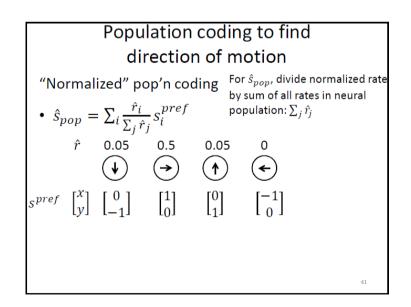

Coding on a scale: distributed + overlapping					
		11 0			
Respo	onses for each p	property add together			
.1 0 .1 – sad	0 .1 .1 – young	0 0 .1 – bald			
.5 0 .5 – neutral	0 .5 .5 – middle	0 0 .5 – middle			
.9 0 .9 – happy	0 .9 .9 – old	0 0 .9 – full-hair			
mood	age	amount hair			
(sad – happy)	(0-100)	(bald – long)			
What does this encode? $1.51.5$ very happy: contributes $1 \times [101] = 101$ Middle-age: contributes $.5 \times [011] = 0.5.5$ Bald: contributes $0 \times [001] = 000$ Summing together: $1.51.5$ 29					

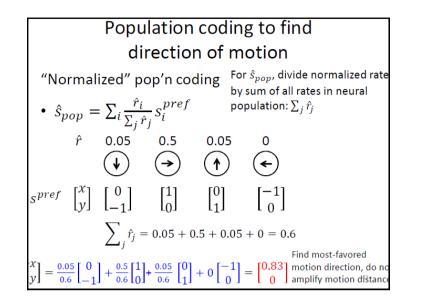

Coding on a scale: distributed + overlapping


Responses for each property add together


.1 0 .1 – sad	0 .1 .1 – young	0 0 .1 – bald	0 .1 .2 – light		
.5 0 .5 – neutral	0 .5 .5 – middle	0 0 .5 – middle	0 .2 .4 – middle		
.9 0 .9 – happy	0 .9 .9 – old	0 0 .9 – full-hair	0 .4 .8 – lots		
mood	age	amount hair	freckles		
(sad – happy)	(0 – 100)	(bald – long)	(some – lots)		
What does this encode? 0.4.8					
If each of <i>n</i> neurons is coding on a scale, at most <i>n</i> distinguishable concepts can be encoded a_{31}					







Anoth	Another example		Assume for all neurons r ^{min} =10 Hz, r ^{max} =100 Hz		
r	50	70	10	30	
	∢	(\rightarrow)	(\uparrow)	(\bullet)	
$\begin{bmatrix} x \\ y \end{bmatrix}$	$\begin{bmatrix} 0\\ -1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0\\ 1 \end{bmatrix}$	$\begin{bmatrix} -1\\ 0 \end{bmatrix}$	

Another example			Assume for all neurons r ^{min} =10 Hz, r ^{max} =100 Hz		
r	50	70	10	30	
	♦	(\rightarrow)	1	(
$\begin{bmatrix} x \\ y \end{bmatrix}$	$\begin{bmatrix} 0\\ -1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0\\1 \end{bmatrix}$	$\begin{bmatrix} -1\\ 0 \end{bmatrix}$	
ŕ	$\frac{50-10}{100}$ 0.4	$\frac{\frac{70-10}{100}}{0.6}$	$\frac{10-10}{100}$ 0	$\frac{30-10}{100}$ 0.2	
\hat{r}^{pop}	$\frac{.4}{1.2}$ 0.33	$\frac{.6}{1.2}$ 0.5	$\frac{0}{1.2}$ 0	$\frac{.2}{1.2}$.4+.6 0.16	i+.2 = 1.2
\hat{s}^{pop}	$= \begin{bmatrix} .34\\33 \end{bmatrix}$				44