Systems Neuroscience CISC 3250

Memory

Professor Daniel Leeds dleeds@fordham.edu JMH 332

Declarative vs. non-declarative memory

- Declarative
 - "Spring break ended on March 22"
 - "Apples are edible, chairs are not edible"
- Non-declarative
 - Throwing a baseball
 - Pattern completion (seeing the dog behind the fence)

Types of memory

Memory

Declarative

Non-declarative

Procedural Conditioning Perceptual Reflet

Procedural Conditioning Perceptual Reflet

Reflet

Amygdala Cerebellum

Procedural Corditioning Perceptual Reflet

Perceptual Reflet

Cerebellum Cerebellum

Short-term vs. long-term memory

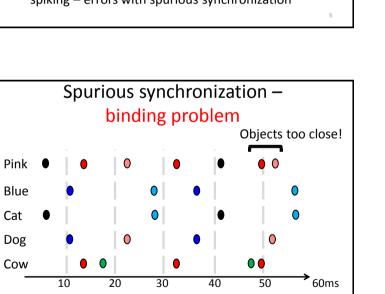
- Short-term memory aka "working" memory
 - Hold facts in memory for 1-200 seconds
 - Sometimes prolonged version of perception
 - Associated with prefrontal cortex (PFC)
- Long-term memory
 - Stores facts over years
 - Associated with hippocampus (also, amygdala)

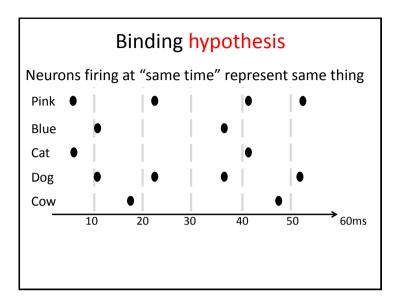
Modeling limits of working memory

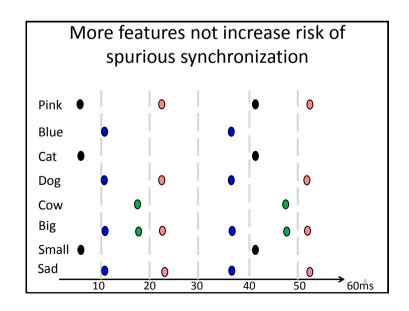
- How much can we hold in working memory?
 - -7 ± 2 things
 - Things can be simple AQRLG
 - Things can be complex

Cat

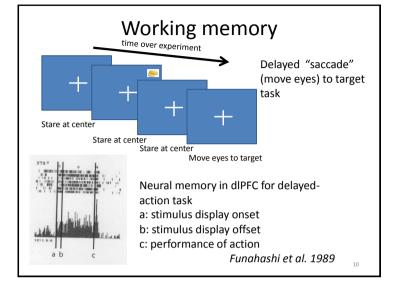
Dog



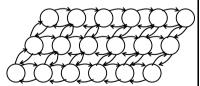




- Why is our working memory limited?
 - Binding hypothesis: distributed code with synchronous spiking – errors with spurious synchronization

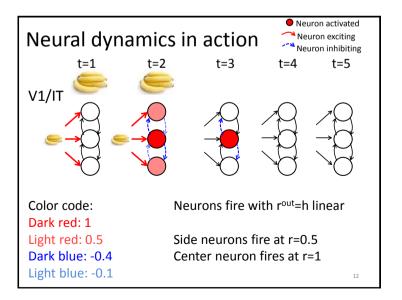


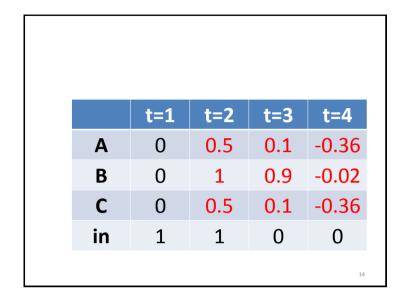
If spikes occurring within 1 ms of each other are considered synchronous, hard to incorporate increasing number of spikes in fixed time

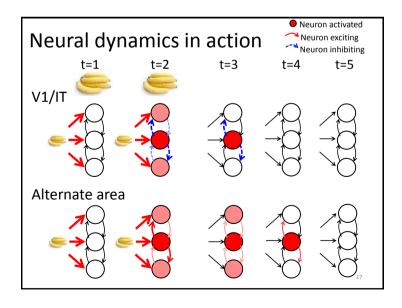


Note adding more features
(with more neurons!) to a concept/object
does **not** cause a problem – no risk of extra
overlap in time with more features

Neural dynamics in "cortical sheet"


- Cortical sheet: group of neurons on same level of hierarchy interacting with lateral connections
- Balance between local cooperation and local inhibition


r^{out} determined from


$$h = \left(\sum_{j} w_{j} r_{j}^{feedfwd}\right) + \left(\sum_{k} w_{k} r_{k}^{lateral}\right) + \left(\sum_{m} w_{m} r_{m}^{feedback}\right)$$

11

A B C	• $r_A^{t=2}$ • $r_B^{t=2}$ • $r_C^{t=2}$ • $w_{B,A}$ =-0	equation $= w_{A,in}r_i$ $= w_{B,in}r_i$ $= w_{C,in}r_i$ 0.4 $w_{B,C}$	al dyna ns and r $t_{in}^{t=1} + w_{B}$ $t_{in}^{t=1} + w_{A}$ $t_{in}^{t=1} + w_{B}$ $t_{in}^{t=1} + w_{B}$ $t_{in}^{t=1} + w_{B}$ $t_{in}^{t=1} + w_{B}$	number $_{t,A}r_B^{t=1}$ $_{t,B}r_A^{t=1}+1$ $_{t,C}r_B^{t=1}$ $_{t,B}$ =-0.1 ν	$w_{C,B}r_C^{t=1}$ $w_{C,B}$ =-0.1				
	t=1 t=2 t=3 t=4								
	A 0 0.5 0.1 -0.36								
	B 0 1 0.9 -0.02								
	C 0 0.5 0.1 -0.36								
	in 1 1 0 0 1 ₁₃								

	Neural dynamics, alternate area: equations and numbers									
D	$w_{B,A}$ =0.5 $w_{B,C}$ =0.5 $w_{A,B}$ =0.1 $w_{C,B}$ =0.1									
	$w_{in,A} = 1 \ w_{in,B} = 1 \ w_{in,C} = 1$									
t=1 t=2 t=3 t=4 t=5										
	A 0 B 0									
	С	0								
	in	1	1	0	0	0	40			
							18			

Neural dynamics, alternate area: equations and numbers

A) (B)

$$w_{B,A}$$
=0.5 $w_{B,C}$ =0.5 $w_{A,B}$ =0.1 $w_{C,B}$ =0.1 $w_{in,A}$ = 1 $w_{in,B}$ = 1 $w_{in,C}$ = 1

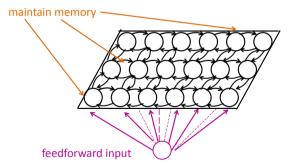
	t=1	t=2	t=3	t=4	t=5
Α	0	1	1.5	0.6	0.15
В	0	1	1.2	0.3	0.12
С	0	1	1.5	0.6	0.15
in	1	1	0	0	0

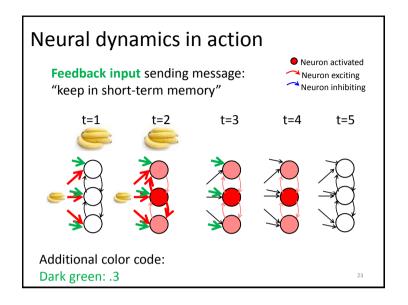
Neural dynamics, alternate area: equations and numbers

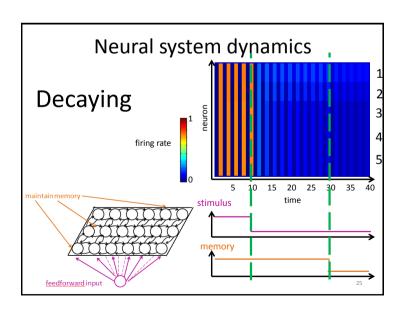
$$w_{B,A}$$
=2 $w_{B,C}$ =2 $w_{A,B}$ =1 $w_{C,B}$ =1 $w_{in,A}$ = 1 $w_{in,B}$ = 1 $w_{in,C}$ = 1

\circ							
	t=1	t=2	t=3	t=4	t=5		
Α	0	1	3	6	12		
В	0	1	3	6	12		
С	0	1	3	6	12		
in	1	1	0	0	0		

Neural dynamics, alternate area: equations and numbers

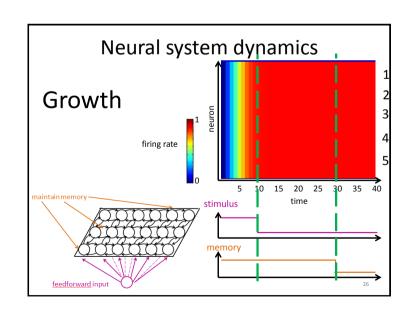


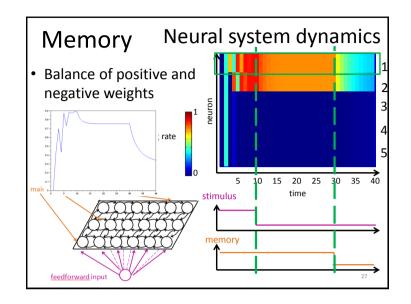

$$w_{B,A}$$
=2 $w_{B,C}$ =2 $w_{A,B}$ =1 $w_{C,B}$ =1 $w_{in,A}$ = 1 $w_{in,B}$ = 1 $w_{in,C}$ = 1

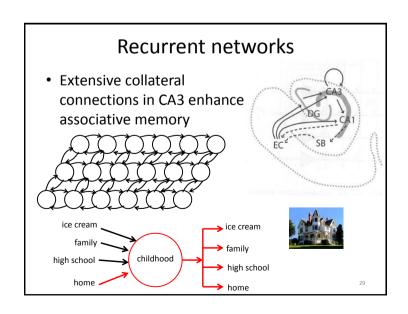

	t=1	t=2	t=3	t=4	t=5
Α	0				
В	0				
С	0				
in	1	1	0	0	0

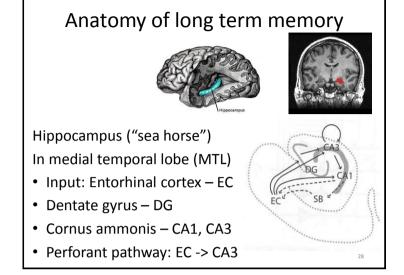
Neural system dynamics

 In an interconnected cortical sheet, neural activity can continue after feedforward input is gone

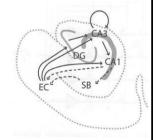



Neural system dynamics


Trappenberg 7.3.2


- Decaying activity: mutual inhibition suppresses continued neural activity after feedforward input is gone – V1
- **Growing activity:** mutual excitation produces global, non-stop activity over time epilepsy
- Memory activity: balance of mutual excitation and mutual inhibition produces maintained (sparse) distributed coding during "working memory" time period – PFC

24



Recurrent networks

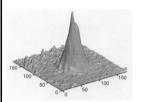
- Extensive collateral connections in CA3
- Broader loop:
 EC -> CA3 -> CA1->EC

$$\Delta w_{ij} = r_i r_j - r_i w_{ij}$$

Cells that fire together, wire together Loop repeatedly increases weight – increasingly encourage simultaneous firing

Learning/remembering

- Learning: neurogenesis in DG
- Retrieval: pattern completion in CA3
- Alternate between learning and retrieval phases
 - DG granule cells enable learning
 - Perforant pathway probes memory


Potential model

31

Further hippocampal representations Grid cells In dorsocaudal medial EC Represent multiple locations (CC) Some rights reserved, Torkel Hafting

Learning locations

- Rats learn neural representations of locations within a maze
- Hippocampal place cells in CA1, CA3

Samsonowich, J Neurosci 1997 Neurons organized in 2D based on similarity of tuning curves

32