Systems Neuroscience CISC 3250

The Big Picture

Professor Daniel Leeds dleeds@fordham.edu JMH 332

The questions of systems and computational neuroscience

- How groups of neurons work together to achieve intelligence
- How the nervous system performs computations
- How to visual and analyze neural/cortical data

Computational neuroscience as "theory of the brain"

David Marr's three levels of analysis (1982):

- **Computational theory:** What is the computational goal and the strategy to achieve it?
- **Representation and algorithm:** What are the input and output for the computation, and how do you mathematically convert input to output?
- Hardware implementation: How do the physical components perform the computation?

Theory -> Algorithms		
Big Picture	Computations	
Memory by Association	Hebbian weight updates	
Slow approach to target	Motion by fraction	
Ignoring irrelevant sensations	Zero attention weights	
Competing perceptions	Lateral inhibition	
Energy preservation	Sparse coding	

Neuroscience ->	Engineering
-----------------	-------------

Model	Programs
Memory by Association	Data storage – hash tables
Motion error correction	Robotic control
Distributed representation	Robust data coding
HMAX vision	Computer vision
Hebbian updates	AI: Neural net learning
Hebbian updates	AI: Neural net learning

Programming for neuroscience

Visualizing 3D data Automate analysis across locations/times: for loop Searching through data: indices and find