CISC 3250
Systems Neuroscience
Matlab

Professor Daniel Leeds
dleeds@fordham.edu
JMH 328A

Variables

Variables store information

• Letters

neuronType='purkinje';

• Single Number

numberOfDendrites=1000;

• Group of numbers, in [] brackets

potentials=[-65 -64 -63.9 -62.8 -61.6];

Access to Matlab

Laptop/home computer:
• Mathworks link on our course website
• Student license for $49

Lab computer:
• Open terminal
• Type: matlab

Commands

Symbols and keywords cause actions

• b=2
 creates variable b with value 2

• d=b+5
 creates variable d with value computed by adding 5 to value of b

• exit
 closes program
= operation

= assigns value on right to variable on left

• $b=5$ valid
• $5 = b$ invalid

Variable names

• A variable name is any valid identifier
 – Starts with a letter, contains letters, digits, and underscores (_) only
 – Cannot begin with a digit
 – Case sensitive:
 username ≠ userName ≠ UserName

Be careful with variable names

• NumSpikes=10

Variables are case-sensitive

• numspikes-5 error, did not capitalize N and S
• NumSpike-5 error, forgot letter s at end

Defining a vector

Vector is a list of numbers

• $b=\[42, 35, 68, -3\]$
• $c=\[-18 \ 12 \ 14\]$

Vector denoted by [] braces
Elements separated by commas , or blank spaces
Plotting data

```matlab
plot(spikeRates)

• Multiple plots at once
figure
plot(vector1, 'b')
plot(vector2, 'r')
```

Counting in Matlab

- `a:b` creates a vector `[a a+1 ... b-1 b]
- `3:6` -> `[3 4 5 6]`
- `a:k:b` creates a vector `[a a+k a+2k ... b]
- `3:4:15` -> `[3 7 11 15]`

Semi-colons

- New line or ; establishes end-of-command
  ```matlab
  figure; plot(vector1); figure;
  plot(vector2)
  ```
- ; suppresses output of computation result to screen
  ```matlab
  b=10-8;
  ```

Accessing vector elements

```matlab
a=[2.2 1.4 -5 3.5 -7.8];
• name accesses full vector
  ```matlab
 a
  ```
  returns 3.5
• name(index) accesses single element
  ```matlab
 a(4)
  ```
• name(index1:index2) accesses set of elements
  ```matlab
 a(2:4) returns [1.4 -5 3.5]
  ```
• name(end) accesses final element
  ```matlab
 a(end)
  ```
Vector indexing

Assume we have a recording of spike rates for 100 seconds, recorded over non-overlapping 100 ms windows: vector SpikeRate

- SpikeRate(1) contains rate from 1-100ms
- SpikeRate(2) contains rate from 101-200ms

How do we see rates for 4-6s (4001-6000ms)
- SpikeRate(401:600)

Data

Data can be read from files
- load('classExample.mat');
- save('classExample2.mat','c','d');

List the loaded variables
- who
- whos

Study the variable
- size(spike_record)
- plot(spike_record)

Standard arithmetic

Operators
- Addition: 5 + 2 evaluates to 7
- Subtraction: 5 - 2 evaluates to 3
- Multiplication: 5 * 2 evaluates to 10
- Division: 4 / 2 evaluates to 2
- Exponent: 5 ^ 2 evaluates to 25

Functions

c=[0 3 -2 4];

Data are analyzed through functions

function_name(input_variable)
- sum(c) -> 5
- min(c) ->
- max(c) ->

- plot(spike_record)
Matrices: rows and columns

- Spaces/commas separate columns
- Semi-colons (;) separate rows
- `name(row,col)` accesses single element

\[ B(2,1) \text{ returns } -5 \]

\[
\begin{bmatrix}
2.2 & 1.4 \\
-5 & 3.5 \\
-7.8 & 4.3
\end{bmatrix}
\]

Matrix indexing

Assume we have a 10x500 matrix of spike patterns for 10 neurons `spikeMat`:

- `spikeMat(1,:)` contains spikes for neuron 1
- `spikeMat(4,:)` contains spikes for neuron 4
- `spikeMat(:,100)` contains spikes for all neurons at time t=100

In general:
- `name(:,col)` accesses all elements in column
- `name(:,)` vector of all elements in name

Multiple plots

- `figure` -> opens new plotting window
- `subplot(r,c,i)` creates grid of plots with
  - `r` rows
  - `c` columns
  - fill in position `i`

\[
\begin{array}{c}
\text{subplot(2,1,1); plot(vec1)} \\
\text{subplot(2,1,2); plot(vec2)}
\end{array}
\]

Taking repeated action

- Assign `k` each value counting up from `start` value to `finish` value, repeating listed actions for each new value of `k`

\[
\text{for } k=\text{start:finish}, \\
\quad \text{action1 to repeat} \\
\quad \text{action2 to repeat} \\
\quad \text{action3 to repeat} \\
\text{end;}
\]

Example from class:

\[
\text{for } k=1:10, \\
\quad \text{subplot(5,2,k), plot(spikeMat(k,:));} \\
\text{end;}
\]
Finding desired values

find(vector<number>) find(c<2)

Return indices in vector that are less than number

Comparisons

• \( d<2, \ d>2 \)    \( d \neq 2 \)    \( d = 2 \)    strict inequality
• \( d \leq 2, \ d = 2 \)    \( d \geq 2 \)    semi-inequality
• \( d = 2 \)    equality

Logic combinations

• \( d > 5 \ \& \ d < 8 \)    the AND operation
• \( d < 5 \ \mid \ d > 8 \)    the OR operation

Vector arithmetic

• Vector is list of numbers in between []
• Can replace one of operands with a vector

\[ 2 + [3 \ 4 \ 1] \quad \textit{yields} \ [5 \ 6 \ 3] \]

• Can place results into new variable

Variable_Name = number*vector;

• Both operands can be vectors, but special rules apply

Saving graphics results

• print -dpng filename.png
• print -djpg filename.jpg