
2/1/2018

1

CISC 3250
Systems Neuroscience

Professor Daniel Leeds

dleeds@fordham.edu

JMH 332

Matlab

Commands

Symbols and keywords cause actions

• b=2 creates variable b with value 2

• d=b+5 creates variable d with value
computed by adding 5 to value of b

• exit closes program

2

= operation

= assigns value on right to variable on left

• b=5 valid

• 5 = b invalid

3

Variable names

• A variable name is any valid identifier

– Starts with a letter, contains letters, digits, and
underscores (_) only

– Cannot begin with a digit

– Case sensitive:
username≠userName≠UserName

4

2/1/2018

2

Standard arithmetic

Operators

• Addition: 5 + 2 evaluates to 7

• Subtraction: 5 - 2 evaluates to 3

• Multiplication: 5 * 2 evaluates to 10

• Division: 4 / 2 evaluates to 2

• Exponent: 5 ^ 2 evaluates to 25

5

Be careful with variable names

• NumSpikes=10

Variables are case-sensitive

• numspikes-5 error, did not capitalize N and S

• NumSpike-5 error, forgot letter s at end

6

Logic

Basic syntax

if condition

actions-if-true

else

actions-if-false

end

7

Conditional behavior based on variable value
if x > 5

y=2;

else

y=5;

end;

Logic

Comparisons

• d<2, d>2 strict inequality

• d<=2, d>=2 semi-inequality

• d==2 equality

Logic combinations

• d>5 & d<8 the AND operation

• d<5 | d>8 the OR operation 8

Conditional behavior based on variable value
if x > 5

y=2;

else

y=5;

end;

2/1/2018

3

Loop

Output

1

2

3

4

9

Repeating similar action
for i = 1:4

disp(i);

end;

Basic syntax

for var = VarValues

actions-to-repeat

end

Defining a vector

Vector is a list of numbers

• b=[42,35,68,-3]

• c=[-18 12 14]

Vector denoted by [] braces

Elements separated by commas , or blank
spaces

10

Counting in Matlab

a:b creates a vector [a a+1 … b-1 b]

• 3:6 -> [3 4 5 6]

a:k:b creates a vector [a a+k a+2k … b]

• 3:4:15 -> [3 7 11 15]

11

Accessing vector elements

a=[2.2 1.4 -5 3.5 -7.8];

• name(index) accesses single element

a(4) returns 3.5

• name(index1:index2) accesses set of elements

a(2:4) returns [1.4 -5 3.5]

• name(end) accesses final element

12

2/1/2018

4

Matrix indexing

Assume we have a 10x500 matrix of spike patterns
for 10 neurons spikeMat

• spikeMat(1,:) contains spikes for neuron 1

• spikeMat(4,:) contains spikes for neuron 4

In general:

• name(:,col) accesses all elements in column

13

Data

Data can be read from files
• load('classExample.mat');

• save('classExample2.mat','c','d');

List the loaded variables
• who

• whos

Study the variable
• size(spike_record)

• plot(spike_record)

15

Vector indexing

Assume we have a recording of spike rates for
100 seconds, recorded over non-overlapping
100 ms windows : vector SpikeRate

• SpikeRate(1) contains rate from 1-100ms

• SpikeRate(2) contains rate from 101-200ms

How do we see rates for 4-6s (4001-6000ms)

SpikeRate(41:60)

16

Semi-colons

; suppresses output of computation result to
screen

a=10-8

a = 2 Printed to screen

b=10-8;

17

2/1/2018

5

Functions

Data are analyzed through functions

function_name(input_variable)

• sum(c) -> 5

• min(c) -> -2

• max(c) -> 4

• plot(spike_record)

18

c=[0 3 -2 4];

spikeExample

• From our course website

• Contains variable spikes – 10 neurons, 500 ms

• 0 if no spike, 1 if spike

• Compute rates for each 100ms window:
rate(1)=sum(spikes(6,1:100));

rate(2)=sum(spikes(6,101:200));

rate(3)=sum(spikes(6,201:300));

rate(4)=sum(spikes(6,301:400));

rate(5)=sum(spikes(6,401:500));
20

spikeExample – rate loop

• Compute rates for each 100ms window:
rate(1)=sum(spikes(6,1:100));

rate(2)=sum(spikes(6,101:200));

rate(3)=sum(spikes(6,201:300));

rate(4)=sum(spikes(6,301:400));

rate(5)=sum(spikes(6,401:500));

• Compute with for loop:
for i=1:5

rate(i)=sum(spikes(6,100*(i-1)+(1:100)));

end;
21

Plotting data

plot([4,5,-2,8])

• From course site:

spikePlot(spikes)

22

