

Standard arithmetic

Operators

- Addition: 5 + 2 evaluates to 7
- Subtraction: 5 2 evaluates to 3
- Multiplication: 5 * 2 evaluates to 10
- Division: 4 / 2 evaluates to 2
- Exponent: 5 ^ 2 evaluates to 25

Be careful with variable names

• NumSpikes=10

Variables are case-sensitive

- numspikes-5 error, did not capitalize N and S
- NumSpike-5 error, forgot letter s at end

<pre>Conditional beha if x > 5 y=2; else y=5;</pre>	vior based on variable value
end;	Basic syntax
	if condition
	actions-if-true
	else
	actions-if-false
	end
	7

Conditiona if x > y=2; else y=5;	al behavior based on varia	able value Logic
end;	Comparisons	
	• d<2, d>2	strict inequality
	• d<=2, d>=2	semi-inequality
	• d==2	equality
	Logic combinations	
	• d>5 & d<8	the AND operation
	• d<5 d>8	the OR operation B

Accessing vector elements		
a=[2.2 1.4 -5 3.5 -7.8];		
• name(index) accesses single element a(4) returns 3.5		
• name(index1:index2) accesses set of elements a(2:4) returns [1.4 -5 3.5]		
• name (end) accesses final element		

Matrix indexing

Assume we have a 10x500 matrix of spike patterns for 10 neurons ${\tt spikeMat}$

- spikeMat(1,:) contains spikes for neuron 1
- spikeMat(4,:) contains spikes for neuron 4

In general:

• name(:, col) accesses all elements in column

13

16

Assume we have a recording of spike rates for 100 seconds, recorded over non-overlapping 100 ms windows : vector SpikeRate

- SpikeRate(1) contains rate from 1-100ms
- SpikeRate(2) contains rate from 101-200ms

How do we see rates for 4-6s (4001-6000ms) SpikeRate (41:60)

 $c = [0 \ 3 \ -2 \ 4];$

18

Data are analyzed through functions

function name(input variable)

- sum(c) -> 5
- min(c) -> -2
- max(c) -> 4
- plot(spike_record)

rate(5) = sum(spikes(6,401:500));

Plotting data

plot([4,5,-2,8])

• From course site: spikePlot(spikes)