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CISC 3250
Systems Neuroscience

Professor Daniel Leeds

dleeds@fordham.edu

JMH 332

Systems Neuroscience

• How the nervous system 
performs computations

• How groups of neurons work together to 
achieve intelligence

• Requirement for the Integrative Neuroscience 
major

• Elective in Computer and Information Science
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Objectives

To understand information processing in 
biological neural systems from computational 
and anatomical perspectives

• Understand the function of key components 
of the nervous system

• Understand how neurons interact with one 
another

• Understand how to use computational tools to 
examine neural data
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Recommended student background

Prerequisite:

• Officially: CISC 2500 Information and Data
Management

or CISC 1800/1810 Intro to Programming

Math
Computer 

science

Some calculus Some programming

4
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Textbook(s)

Fundamentals of Computational 
Neuroscience, Second Edition, 
by Trappenberg

• Suggested

• We will focus on the ideas and study
a relatively small set of equations

Computational Cognitive Neuroscience, 
by O’Reilly et al.

• Optional, alternate perspective 5

Website

http://storm.cis.fordham.edu/leeds/cisc3250/

Go online for

– Announcements

– Lecture slides

– Course materials/handouts

– Assignments
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Requirements

• Attendance and participation
– 1 unexcused absence allowed

– Ask and answer questions in class

• Homework: Roughly 5 across the semester

• Exams
– 2 midterms, in February and April

– 1 final, in May

• Don’t cheat
– You may discuss course topics with other 

students, but you must answer homeworks
yourself (and exams!) yourself
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Matlab

Popular tool in scientific computing for:

• Finding patterns in data

• Plotting results

• Running simulations

Student license for $50 on Mathworks site

Available in computers at JMH 330 and
LL 612

8
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Your instructor

Prof. Daniel Leeds

E-mail: dleeds@fordham.edu

Office hours: Mon 3-4, Thurs 12-1

Office: JMH 332

computer science + psychology -> models of vision
9

Introducing systems and 
computational neuroscience

• How groups of neurons work together to 
achieve intelligence

• How the nervous system 
performs computations
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Levels of organization
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From a psychological perspective…

What are elements 
of cognition?

13
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Systems neuroscience

Regions of the central nervous system 
associated with particular elements of cognition

• Visual object recognition

14

Systems neuroscience

Regions of the central nervous system 
associated with particular elements of cognition

• Visual object recognition

• Motion planning and execution

• Learning and remembering

– Show pictures!
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Computational neuroscience

Strategy used by the nervous system to solve 
problems

• Visual object perception 
through biological 
hierarchical model
“HMAX”
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Computational neuroscience as 
“theory of the brain”

David Marr’s three levels of analysis (1982):

• Computational theory: What is the 
computational goal and the strategy to achieve 
it?

• Representation and algorithm: What are the 
input and output for the computation, and how 
do you mathematically convert input to output?

• Hardware implementation: How do the physical 
components perform the computation?

17
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Marr’s three levels for “HMAX” vision

• Computational theory: Goal is to recognize 
objects

• Representation and algorithm:

– Input: Pixels of light and color

– Output: Label of object identity

– Conversion: Through combining local visual 
properties

• Hardware implementation:

– Visual properties “computed” by networks of 
firing neurons in object recognition pathway

18

Levels of organization

19

Course outline

• Philosophy of neural modeling

• The neuron – biology and input/output behavior

• Learning in the neuron

• Neural systems and neuroanatomy

• Representations in the brain

• Perception

• Memory/learning

• Motor control

20

Plus: Matlab
programming

The neuron
• Building block of all the systems we will study

• Cell with special properties
– Soma (cell body) can have 5-100 μm diameter, but 

axon can stretch over 10-1000 cm in length

– Receives input from neurons through dendrites

– Sends output to neurons through axon

21
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Neuron membrane voltage

• Voltage difference across cell membrane

– Resting potential: ~-65 mV

– Action potential: quick upward spike in voltage
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Example neural signals 22

The action potential

• Action potential begins at axon hillock and 
travels down axon

• At each axon terminal, 
spike results in release 
of neurotransmitters

• Neurotransmitters
(NTs) attach to 
dendrite of another 
neuron, causing voltage change in this second 
neuron

23

Inter-neuron communication

Neuron receives input from 1000s of other neurons

• Excitatory input can increase spiking

• Inhibitory input can decrease spiking

A synapse links neuron A with neuron B

• Neuron A is pre-synaptic: 
axon terminal outputs NTs

• Neuron B is post-synaptic: 
dendrite takes NTs as input

24

More on neuron membrane voltage

• Given no input, membrane stays at resting 
potential (~ -65 mV)

Inputs:

• Excitation temporarily increases potential

• Inhibition temporarily decreases potential

Continual drive to remain at rest

25
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Patch clamp experiment

• Attach electrode to neuron

• Raise/drop voltage on electrode

• Measure nearby voltage (with
another electrode)

26
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neurophysiology 

experiment

More on the action potential

1. Accumulated excitation passes certain level

2. Non-linear increase in membrane voltage

3. Rapid reset

27http://commons.wikimedia.org/wiki/File:Action_potential.svg
CC User: Chris 73

Modeling voltage over time

Equations focusing on change in voltage v

Components:

• Resting state potential (voltage) EL

• Input voltages RI

• Time t

𝜏
𝑑𝑣(𝑡)

𝑑𝑡
= − 𝑣 𝑡 − 𝐸𝐿 + 𝑅𝐼(𝑡)

change towards 
resting state

incorporate  new
input information

28

Simulation

• Initial voltage

• Time interval for update

• Input at each time

• Apply rule to compute new voltage at each 
time

29

http://commons.wikimedia.org/wiki/File:Action_potential.svg
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Applying dv/dt step-by-step

EL=-65mV v(0ms)=-65mV 𝜏=1
RI(t)=20mV (from t=0ms to 1000ms)
time step: 10ms

• v(10ms) = v(0ms) + 
𝑑𝑣(0ms)

𝑑𝑡
x
10

1000
= -65 + [-(-65- -65) + 20] x 

10

1000
= -65 + 20 x 

10

1000
= -64.8

• v(20ms) = v(10ms) + 
𝑑𝑣(10ms)

𝑑𝑡
x
10

1000
= -64.8 + [-(-64.8- -65) + 20] x 

10

1000
= -64.8 + -0.2+20 x 

10

1000
= -64.8 + 19.8 x 

10

1000
= -64.602

𝜏
𝑑𝑣(𝑡)

𝑑𝑡
= − 𝑣 𝑡 − 𝐸𝐿 + 𝑅𝐼(𝑡)

30

Applying dv/dt step-by-step

EL=-65mV v(0ms)=-65mV 𝜏=1/10
RI(t)=20mV (from t=0ms to 1000ms)
time step: 10ms

• v(10ms) = v(0ms) + 
𝑑𝑣(0ms)

𝑑𝑡
x
10

1000
= -65 + 10x[-(-65- -65) + 20] x 

10

1000
= -65 + 200 x 

10

1000
= -63

• v(20ms) = v(10ms) + 
𝑑𝑣(10ms)

𝑑𝑡
x
10

1000
= -63 + 10x[-(-63- -65) + 20] x 

10

1000
= -63 + 10x[-2+20] x 

10

1000
= -63 + 10x[180] x 

10

1000
= -61.2

𝜏
𝑑𝑣(𝑡)

𝑑𝑡
= − 𝑣 𝑡 − 𝐸𝐿 + 𝑅𝐼(𝑡)

31

Changing model terms

𝜏 has inverse effect

• increase 𝜏 decreases update speed

• decrease 𝜏 increases update speed

RI(t) has linear effect

• increase RI(t) increases update speed

• decrease RI(t) decreases update speed

33

Voltage over time: reset

When voltage passes threshold vthresh, voltage 
reset to vres

v(tf)=vthresh

v(tf+δ)=vres

δ is small positive number close to 0

𝜏
𝑑𝑣(𝑡)

𝑑𝑡
= − 𝑣 𝑡 − 𝐸𝐿 + 𝑅𝐼(𝑡)

34
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Voltage over time

Simulated Biological

𝜏
𝑑𝑣(𝑡)

𝑑𝑡
= − 𝑣 𝑡 − 𝐸𝐿 + 𝑅𝐼(𝑡)

35
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Below and above threshold

Newly added:
If input constant for long time RI(t)= k mV

Output v(t) will plateau to EL+k if EL+k<vthresh 36

0

-10

-20

-30

-40

-50

-60

-70
0        100       200      300      400      500 0        100       200      300      400      500

+15mv input +50mv input
EL=-65mV

Accumulating information over inputs

Positive and negative weighted inputs from 
dendrites wα added together:

𝑅𝐼 𝑡 =

𝑗

𝑤𝑗𝛼𝑗(𝑡)

j is index over dendrites; first-pass model
38

Accumulating inputs

39
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Accumulating inputs

41
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Accumulating inputs

43
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Chemical level: NT receptors

Pre-synaptic: 𝛼
• Amount of NT released
Post-synaptic: w
• Number of receptors in 

dendrite membrane
• Efficiency of receptors
+w or –w
• Reflect excitation or inhibition
• One NT type per synapse
• Fixed sign per NT

45

Form of dendrite input

Pre-synaptic neuron spikes

Neurotransmitter (NT) released

NT received by post-synaptic
dendrite at time tf

Post-synaptic voltage rises and 
then fades, α(t)

𝑅𝐼 𝑡 =

𝑗

𝑤𝑗𝛼𝑗 (𝑡)

𝜏
𝑑𝑣(𝑡)

𝑑𝑡
= − 𝑣 𝑡 − 𝐸𝐿 + 𝑅𝐼(𝑡)

46

α(t)

ttf
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𝑅𝐼 𝑡 =

𝑗

𝑤𝑗𝛼𝑗 (𝑡)

47
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New pre-synaptic 
inputs at

• 34 ms
• 68 ms
• 100 ms
• 135 ms

“Leaky integrate-and-fire” neuron

• Sum inputs from 
dendrites (“integral”)

• Decrease voltage 
towards resting state 
(“leak”)

• Reset after passing 
threshold (“fire”)

𝜏
𝑑𝑣(𝑡)

𝑑𝑡
= − 𝑣 𝑡 − 𝐸𝐿 + 𝑅𝐼(𝑡)

𝑣 𝑡𝑓 + 𝛿 = 𝑣𝑟𝑒𝑠

𝑅𝐼 𝑡 =

𝑗

𝑤𝑗𝛼𝑗(𝑡)

48

Activation function

Often non-linear relation between dendrite input 
and axon output

𝑔(𝑅𝐼 𝑡 )

Sum inputs

Apply (non-linear?) 
transformation to input

𝜏
𝑑𝑣(𝑡)

𝑑𝑡
= − 𝑣 𝑡 − 𝐸𝐿 + 𝑔(𝑅𝐼 𝑡 )

𝑅𝐼 𝑡 =

𝑗

𝑤𝑗𝛼𝑗(𝑡)

49

Activation function

Function type

Linear

Step

Threshold-
linear

Sigmoid

Radial-basis

50
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An example sigmoid

g(2)= 0.9

g(1)= 0.5

g(0)= 0.1

g(-4)= 0

52

Tuning curves

Some single neurons fire in response to 
“perceiving” a quality in the world

Adrian, 
J Physiol 1926.

Henry et al., 
J Neurophys

1974. 53

Variations in activation functions

• Activation function has fixed shape

– Sigmoid is S shape, Radial is Bell shape

• By default, transition between 0 and 1

• Some details of shape may vary

– Smallest and lowest value

– Location of transition between values

54

Neural coding

Perception, action, and other cognitive states 
represented by firing of neurons

• Coding by rate: high rate of pre-synaptic 
spiking causes post-synaptic spiking

• Coding by spike timing: multiple pre-synaptic 
neurons spiking together causes post-synaptic 
spiking

time
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Time coding at t=290ms

56
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4

0 100 200 300 400ms

Rate coding: 3.5 – 5.5s

570 1s 2s 3s 4s 5s 6s 7s 8s

Spike time coding, 3-6s

580 1s 2s 3s 4s 5s 6s 7s 8s

Inhibition can be informative

Inputs of interest can produce

• Below-normal spike rate

• Decreased synchrony among neurons

590s    1s 2s 3s 4s 5s 6s

Coding through rate inhibition, 
roughly in 2-3s interval

Take note of baseline. 
Rate and time coding 
are deviations from 
baseline
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Computing spike rate

• Add spikes over a period of time

𝑣 𝑡 =
𝑛𝑢𝑚 𝑠𝑝𝑖𝑘𝑒𝑠 𝑖𝑛 Δ𝑇

Δ𝑇

• Average spikes over a set of neurons

𝐴 𝑡 = lim
Δ𝑇→0

1

Δ𝑇

𝑛𝑢𝑚 𝑠𝑝𝑖𝑘𝑒𝑠 𝑖𝑛 𝑁 𝑛𝑒𝑢𝑟𝑜𝑛𝑠

𝑁
60


