CISC 3250 Systems Neuroscience

Representations in the brain

Professor Daniel Leeds dleeds@fordham.edu JMH 332

How do we represent our world? One sensation, multiple levels

Song

- Meaning of words
- Pitch/melody
- Rhythm
- Language
- Singer identity

Dance

- Body part
 - arms, hands, legs
- Direction
 - forward, to-the-left
- Timing
 - order of moves, speed

How do we represent our world? Diverse sensations

Dog

Flower

- Body parts
 - tail, ears, legs
- Sounds
 - bark, whimper, pant
- Feel
 - fur

color, size, shape

Appearance

- Smell
- Feel
 - texture, temperature

We call each piece of information a "feature"

Computational representations describing a visual object

- A picture is worth a million pixels
 - Digital picture broken into a grid of boxes pixels
 - Each pixel contains a color

• Translate from pixels to category label:

floss flour flower flume flute foam

Data in the brain

 Neural location related to information encoded

 Progression of encoding for increasingly complex concepts

Simple outline of vision pathway

- 1. Retina: pixel detectors
- 2. Primary visual cortex (V1): edge detectors
- 3. Second-cortical layer (V2?): edge combination detectors

. . .

N. Higher-cortical layer: Full-object detectors

Interacting representations: feedforward network

 More-complex information/features computed from simpler information/features

	computed from simpler information/feat									
1	2	3	Pixel 1	w ₁ =5						
4	5	6	Pixel 2	$w_2 = -1$ $w_3 =5$						
7	8	9	Divid 0	$w_4 = .5$						
			Pixel 8 Pixel 9	$w_5 = 1$						
				w ₆ =.5						
				w ₇ =5 w _o =-1						
				$w_8 = -1$ $w_9 =5$						

Suppression/competition with interneurons

- In common cortical circuits, there are feedforward excitatory inputs and lateral inhibitory inputs
- Relative weighting achieves balance between activation and suppression

Opposing interpretations of scene

Classes of representation

Fully distributed representation

- Every neuron/region plays a part Sparsely-distributed representation
- Neural level: hyper-column for perceptual feature

Tanaka 2003, columns of neurons for shape types in IT

 "Region" level: face network in medial temporal, lateral temporal, anterior parietal

Biology of sparse coding

- Preserving energy higher spiking rate requires higher energy
- · Representational fan-out
 - -~1 million neurons in retina -> ~140 million neurons in V1 (primary visual cortex)
 - ~50,000 neurons in cochlea ->1.6 million neurons in A1 (primary auditory cortex)

http://www.plosbiology.org/article/info:doi/10 .1371/journal.pbio.0030137

Principles of information coding: binary How many things can we represent with n binary (gstep activation function) neurons? • Complete sparse coding: n things firing not firing banana apple pear • Complete distributed coding: 2n things banana blueberry orange apple pear No fruit

Coding on a scale: distributed + overlapping Responses for each property add together $.1 \ 0 \ .1 - sad$ 0.1.1 - young0.1 - bald.50.5 - neutral 0.5.5 - middle0 0 .5 – middle 0.9.9 - old0 0 .9 - full-hair .90.9 - happyamount hair mood age (bald - long) (sad – happy) (0 - 100)How do we encode: happy-ish (.8), young-ish (.2), some-hair (0.5)? $\sum_{i} level_{i} pattern_{i}$ n1 n2 n3 .8 0 .8 0 .2 .2 0 0 .5 .9 .2 1.5

distributed + overlapping Responses for each property add together $.1 \ 0 \ .1 - sad$ 0.1.1 - voung0 0 .1 - bald .5 0 .5 - neutral 0 .5 .5 - middle 0 0 .5 - middle .9 0 .9 – happy 0.9.9 - old0 0 .9 - full-hair mood age amount hair (sad – happy) (0 - 100)(bald - long) How do we encode: sad (0), mid-age (.5), hairy (1.0)? $\sum_{i} level_{i} pattern_{i}$ n1 n2 n3 0 0 0 0 .5 .5 0 0 1 0 .5 1.5

Coding on a scale:

Coding on a scale: distributed + overlapping

Responses for each property add together

What does this encode? 0.4.8

What does this encode? 1.5 1.5

29

Coding on a scale: distributed + overlapping

Responses for each property add together

 $.1 \ 0 \ .1 - sad$ 0.0.1 - bald0.1.1 - young.5 0 .5 – neutral 0.5.5 – middle 0 0 .5 - middle .90.9 - happy0.9.9 - old0.9 - full-hairamount hair mood age (0 - 100)(bald - long) (sad – happy)

What does this encode? 0.4.8 **Very sad:** contributes: $0 \times [101] = 000$ **Middle-age:** contributes .4 x $[0\ 1\ 1] = 0\ .4\ .4$ Middle-hair: contributes $.4 \times [001] = 00.4$

Summing together: 0.4.8

Decoding with tuning curves

Use spiking rates from multiple neurons to determine encoded feature

- 15 Hz firing rate for red neuron means sound 400 or 800 Hz (at 10 dB)
- 15 Hz for red and 6 Hz for blue requires sound 800 Hz (at 10 dB)

Actual decoding incorporates noise/natural variability in spiking

Coding on a scale: distributed + overlapping

Responses for each property add together

 $.1 \ 0 \ .1 - sad$ 0.1.1 - young0.0.1 - bald.5 0 .5 – neutral 0 .5 .5 – middle 0 0 .5 - middle .90.9 - happy0.9.9 - old0 0 .9 - full-hair amount hair mood age (0 - 100)(bald - long) (sad – happy)

What does this encode? 1.5 1.5 Very happy: contributes $1 \times [101] = 101$ **Middle-age:** contributes .5 x $[0\ 1\ 1] = 0.5.5$ **Bald:** contributes $0 \times [0 \ 0 \ 1] = 0 \ 0$ Summing together: 1.51.5

Population coding to find direction of motion

Non-normalized population coding

•
$$s_{dir} = \sum_{i} r_i s_i^{pref}$$

 $s_{dir} =$

Population coding to find direction of motion

Non-normalized population coding

•
$$s_{dir} = \sum_{i} r_{i} s_{i}^{pref}$$

$$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = 1 \begin{bmatrix} 0 \\ -1 \end{bmatrix} + 4 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 0 \begin{bmatrix} -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$

Population coding to find direction of motion

"Normalized" firing rate

$$\hat{r}_i = \frac{r_i - r_i^{min}}{r_i^{max} - r_i^{min}}$$

If $r^{min} = 1$, $r^{max} = 6$ for \uparrow Then $\hat{r_i} = \frac{4-1}{6-1} = \frac{3}{5} = 0.6$

$$x$$
]

Normalized \hat{r} will always be between 0 and 1

Normalized firing rates

$$S^{pref} \begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Normalized firing rates

0.16

0

(

 $\begin{bmatrix} 0.5 \\ 0 \end{bmatrix}$

Population coding to find direction of motion

"Normalized" pop'n coding $\int_{0}^{\infty} e^{-\hat{S}_{pop}} e^{-\hat{S}_{pop}}$ by sum of all rates in neural

•
$$\hat{s}_{pop} = \sum_{i} \frac{\hat{r}_i}{\sum_{j} \hat{r}_j} s_i^{pref}$$

population: $\sum_{i} \hat{r}_{i}$ 0.05

• $\hat{s}_{pop} = \sum_{i} \frac{\hat{r}_{i}}{\sum_{i} \hat{r}_{j}} s_{i}^{pref}$

"Normalized" pop'n coding $\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty$ by sum of all rates in neural population: $\sum_{i} \hat{r}_{i}$

•
$$\hat{s}_{pop} = \sum_{i} \frac{\hat{r}_{i}}{\sum_{j} \hat{r}_{j}} s_{i}^{pref}$$

0.05

Population coding to find

direction of motion

$$s^{pref} \begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

$$\sum_{i} \hat{r}_{j} = 0.05 + 0.5 + 0.05 + 0 = 0.6$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{0.05}{0.6} \begin{bmatrix} 0 \\ -1 \end{bmatrix} + \frac{0.5}{0.6} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \frac{0.05}{0.6} \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 0 \begin{bmatrix} -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.83 \\ 0 \end{bmatrix}$$
 motion direction, do no amplify motion difference of the contract of t

- 0.05

Another example

Assume for all neurons rmin=10 Hz, rmax=100 Hz

10

30

Assume for all neurons Another example rmin=10 Hz, rmax=100 Hz 10 30 100 100 100 100 0.6 0.2 $\frac{.2}{1.2}$.4+.6+.2 = 1.2 $\frac{.4}{1.2}$ 0.33 $\frac{.6}{1.2}$ 1.2 \hat{r}^{pop} 0.16

A thir	d exan	nple	Assume for all neurons r ^{min} =20 Hz, r ^{max} =80 Hz		
r	20	20	30	50	
	lacksquare	•	1	(
$\begin{bmatrix} x \\ y \end{bmatrix}$	$\left[\begin{smallmatrix} 0 \\ -1 \end{smallmatrix} \right]$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$	
r	$\frac{20-20}{80}$	$\frac{20-20}{80}$	$\frac{30 - 20}{80}$ 0.13	$\frac{50 - 20}{80}$ 0.38	
\hat{r}^{pop}	$\frac{0}{.51}$	$\frac{0}{.51}$.13 .52 . 26	$\frac{.38}{.51}$.13+.38 = 0.76	.51
\hat{s}^{pop}	$= \begin{bmatrix}76 \\ .26 \end{bmatrix}$				49

Decoding large neural codes

Classifier:

- If consistent response, can learn pattern
- If irrelevant response, cannot learn helpful pattern

Method:

- 500 trials measure mood, record brain responses
- Make classifier from neural patterns in trials 1-250
- Find accuracy to predict mood in trials 251-500

