CISC 3250
 Systems Neuroscience

Representations
 in the brain

Professor Daniel Leeds
dleeds@fordham.edu
JMH 332

How do we represent our world? Diverse sensations

Dog

- Body parts
- tail, ears, legs
- Sounds

- bark, whimper, pant
- Feel
- fur

We call each piece of information a "feature"

Computational representations describing a visual object

- A picture is worth a million pixels
- Digital picture broken into a grid of boxes - pixels
- Each pixel contains a color

- Translate from pixels to category label:
floss flour flower flume flute foam

Data in the brain

- Neural location related to information encoded

Progression of encoding for increasingly complex concepts

Interacting representations:

feedforward network

- More-complex information/features computed from simpler information/features

$$
\begin{aligned}
& w_{1}=-.5 \\
& w_{2}=-1 \\
& w_{3}=-.5 \\
& w_{4}=.5 \\
& w_{5}=1 \\
& w_{6}=.5 \\
& w_{7}=-.5 \\
& w_{8}=-1 \\
& w_{9}=-.5
\end{aligned}
$$

Interacting representations: feedforward network - More-complex information/features computed from simpler information/features					
1	2	3		$\mathrm{w}_{1}=-.5$	
4	5	6		$\mathrm{w}_{2}=-1$	
7	8	9		$w_{3}=-.5$ $w_{4}=.5$	
				$\mathrm{w}_{5}=1$	
				$\mathrm{w}_{6}=.5$	
				$\mathrm{w}_{7}=-.5$	
				$\mathrm{w}_{8}=-1$	
				$\mathrm{w}_{9}=-.5$	

Simple outline of vision pathway

1. Retina: pixel detectors
2. Primary visual cortex (V1): edge detectors
3. Second-cortical layer (V2?): edge combination detectors
N. Higher-cortical layer: Full-object detectors

Lateral connections: surround suppresion

Neuron can have suppressed response for
features deviant from maximum preference

Suppression/competition with interneurons

- In common cortical circuits, there are feedforward excitatory inputs and lateral inhibitory inputs
- Relative weighting achieves balance between activation and suppression

Simplified circuit

Competition on behavior level

- Olfactory Epithelium (OE) - input
- Mitral - output

Data in the brain

- Neural location related to information encoded

Progression of encoding for increasingly complex concepts

Classes of representation

Local representation

- Neural level: "grandmother" cell
- "Region" level: face region, place region

Parahippocampal place area
Fusiform face area
Visual word form area
Lateral occipital cortex (shapes)

Classes of representation

Fully distributed representation

- Every neuron/region plays a part

Sparsely-distributed representation

- Neural level: hyper-column for perceptual feature

Tanaka 2003, columns of
neurons for shape types in IT

- "Region" level:
face network in medial temporal, lateral temporal, anterior parietal

Principles of information coding: binary

How many things can we represent with n binary (gtep activation function) neurons?

- Complete sparse coding: n things

firing
\bigcirc not
banana
apple
pear

- Complete distributed coding: 2^{n} things

banana

blueberry

orange

apple

pear
$\bigcirc \bigcirc$
lime

lemon
 No fruit
- Preserving energy - higher spiking rate requires higher energy
- Representational fan-out
- ~1 million neurons in retina ->

> ~140 million neurons in V1 (primary visual cortex)

- ~50,000 neurons in cochlea -> 1.6 million neurons in A1 (primary auditory cortex)

Coding on a scale: sparsity

Coding on a scale:

distributed + overlapping
Responses for each property add together

.10 .1 - sad	0.1 .1 - young	00.1 - bald
.50 .5 - neutral	0.5 .5 - middle	00.5 - middle
.90 .9 - happy	0.9 .9 - old	00.9 - full-hair
mood	age	amount hair
(sad - happy)	$(0-100)$	(bald - long)

How do we encode: happy-ish (.8), young-ish (.2),
some-hair (0.5)? $\quad \sum_{j}$ level $_{j}$ pattern $_{j}$
n1 n2 n3
$\begin{array}{lll}. & 0 & .8\end{array}$
0 . 2 . 2

| $0 \quad 0 \quad .5$ |
| :--- | :--- |

.9 .21 .5

Coding on a scale: distributed + overlapping		
. 10.1 - sad	0.1 .1 - young	00.1 - bald
. 50.5 - neutral	0.5 .5 - middle	00.5 - middle
. 90.9 - happy	0.9 .9 - old	00.9 - full-hair
mood (sad - happy)	$\begin{aligned} & \text { age } \\ & (0-100) \end{aligned}$	amount hair (bald - long)
What does this encode? 0.4 .8		
What does this encode? 1.51 .5		

Coding on a scale:

distributed + overlapping

Responses for each property add together

.10 .1 - sad	0.1 .1 - young	00.1 - bald
.50 .5 - neutral	0.5 .5 - middle	00.5 - middle
.90 .9 - happy	0.9 .9 - old	00.9 - full-hair
mood	age	amount hair
(sad - happy)	$(0-100)$	(bald - long)

What does this encode? 0.4 .8
Very sad: contributes: $0 \times[101]=000$
Middle-age: contributes $4 \times\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]=0.4 .4$
Middle-hair: contributes $4 \times\left[\begin{array}{lll}0 & 1\end{array}\right]=0.4$
Summing together:
0.4 . 8

Decoding with tuning curves

Use spiking rates from multiple neurons to determine encoded feature

- 15 Hz firing rate for red neuron means sound 400

- 15 Hz for red and 6 Hz for blue requires sound 800 Hz (at 10 dB)

Actual decoding incorporates noise/natural variability in spiking

Coding on a scale:

 distributed + overlapping
Responses for each property add together

.10 .1 - sad	0.1 .1 - young	00.1 - bald
.50 .5 - neutral	0.5 .5 - middle	00.5 - middle
.90 .9 - happy	0.9 .9 - old	00.9 - full-hair
mood	age	amount hair
(sad - happy)	$(0-100)$	(bald - long)

What does this encode? 1.51 .5
Very happy: contributes $1 \times[101]=101$
Middle-age: contributes $.5 \times\left[\begin{array}{lll}0 & 1 & 1]=0.5 .5\end{array}\right.$
Bald: contributes
$0 \times\left[\begin{array}{lll}0 & 1\end{array}\right]=000$
Summing together:
1.51 .5

Population coding to find direction of motion

Non-normalized population coding

- $s_{d i r}=\sum_{i} r_{i} s_{i}^{\text {pref }}$

$s_{\text {dir }}=$

Population coding to find direction of motion

Population coding to find direction of motion
"Normalized" firing rate

- $s_{d i r}=\sum_{i} r_{i} s_{i}^{p r e f}$
$s^{\text {pref }}$
$r \quad 1$

$$
\begin{aligned}
& f\left[\begin{array}{l}
x \\
y
\end{array}\right]\left[\begin{array}{c}
0 \\
-1
\end{array}\right] \quad\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=1\left[\begin{array}{c}
0 \\
-1
\end{array}\right]+4\left[\begin{array}{l}
1 \\
0
\end{array}\right]+1\left[\begin{array}{l}
0 \\
1
\end{array}\right]+0\left[\begin{array}{c}
-1 \\
0
\end{array}\right]=\left[\begin{array}{l}
4 \\
0
\end{array}\right]}
\end{aligned}
$$

- $\hat{r}_{i}=\frac{r_{i}-r_{i}^{\min }}{r_{i}^{\max }-r_{i}^{\min }}$

$$
r \quad 4
$$

$$
\begin{aligned}
& \text { If } r^{\min }=1, r^{\max }=6 \text { for } \\
& \text { Then } \hat{r}_{i}=\frac{4-1}{6-1}=\frac{3}{5}=0.6^{i}
\end{aligned}
$$

Normalized \hat{r} will always be between 0 and 1
${ }_{s}$ pref

Population coding to find direction of motion	
"Normalized" pop'n coding - $\hat{s}_{\text {pop }}=\sum_{i} \frac{\hat{r}_{i}}{\sum_{j} \hat{r}_{j}} s_{i}^{p r e f}$	For $\hat{S}_{\text {pop }}$, divide normalized rate by sum of all rates in neural population: $\sum_{j} \hat{r}_{j}$
$\begin{array}{llll} \hat{r} & 0.05 & 0.5 & 0.05 \\ & \downarrow & \rightarrow & \uparrow \end{array}$	
$s^{\text {pref }}\left[\begin{array}{l} x \\ y \end{array}\right]\left[\begin{array}{c} 0 \\ -1 \end{array}\right] \quad\left[\begin{array}{l} 1 \\ 0 \end{array}\right] \quad\left[\begin{array}{l} 0 \\ 1 \end{array}\right]$	$\left[\begin{array}{c} -1 \\ 0 \end{array}\right]$
	${ }^{4}$

Population coding to f				
"Normalized" pop'n coding For $\hat{s}_{\text {pop }}$, divide normalized rate by sum of all rates in neural - $\hat{s}_{\text {pop }}=\sum_{i} \frac{\hat{r}_{i}}{\sum_{j} \hat{r}_{j}} s_{i}^{\text {pref }}$ population: $\sum_{j} \hat{r}_{j}$				
$\begin{array}{cccc} 0.05 & 0.5 & 0.05 & 0 \\ \downarrow & ↔ & \uparrow & \leftarrow \end{array}$				
$\left.\begin{array}{rl} \text { spref }^{\text {pre }}\left[\begin{array}{l} x \\ y \end{array}\right] & {\left[\begin{array}{c} 0 \\ -1 \end{array}\right]} \end{array} \begin{array}{l} 1 \\ 0 \end{array}\right] \quad\left[\begin{array}{l} 0 \\ 1 \end{array}\right]\left[\begin{array}{c} -1 \\ 0 \end{array}\right]$				
$\left.\begin{array}{l} x \\ y \end{array}\right]=\frac{0.05}{0.6}\left[\begin{array}{c} 0 \\ -1 \end{array}\right]+\frac{0.5}{0.6}\left[\begin{array}{l} 1 \\ 0 \end{array}\right]+\frac{0.05}{0.6}\left[\begin{array}{l} 0 \\ 1 \end{array}\right]+0\left[\begin{array}{c} -1 \\ 0 \end{array}\right]=\left[\begin{array}{c} 0.83 \\ 0 \end{array}\right] \begin{aligned} & \text { motion direction, do nd } \\ & \text { amplify motion difstanc, } \end{aligned}$				

Decoding large neural codes

Information from neuron patterns

- Happy

Miminiminin!

- Old
- Hairy

- Loud

Overlay of multiple patterns and noise

- What property is this?

Decoding large neural codes

Classifier:

- If consistent response, can learn pattern
- If irrelevant response, cannot learn helpful pattern

Method:

- 500 trials - measure mood, record brain responses
- Make classifier from neural patterns in trials 1-250
- Find accuracy to predict mood in trials 251-500

