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How do we represent our world?
Diverse sensations

Flower

* Appearance
— tail, ears, legs — color, size, shape

Dog

* Body parts

* Sounds * Smell
— bark, whimper, pant  « Feel

* Feel — texture, temperature
— fur

We call each piece of
information a “feature” 2

How do we represent our world?
One sensation, multiple levels

Song Dance

* Meaning of words ¢ Body part

* Pitch/melody —arms, hands, legs

* Rhythm * Direction

* Language — forward, to-the-left
* Timing

* Singer identity
— order of moves, speed

Computational representations
describing a visual object
* A picture is worth a million pixels

— Digital picture broken into a grid of boxes — pixels
— Each pixel contains a color

1
1 dkGrn dkdkGrn

1
) dkGrn white

* Translate from pixels to category label:

floss  flour flume flute foam
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Data in the brain
* Neural location related to
information encoded

* Progression of encoding
for increasingly complex
concepts

Simple outline of vision pathway

1. Retina: pixel detectors
2. Primary visual cortex (V1): edge detectors
3. Second-cortical layer (V2?): edge combination

detectors

. Higher-cortical layer: Full-object detectors

Interacting representations:
feedforward network

* More-complex information/features
computed from simpler information/features
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Cortical organization and
feature organization

F — Left visual field
Nearby neurons respond
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Suppression/competition with
interneurons

* |[n common cortical circuits, there are
feedforward excitatory inputs and lateral
inhibitory inputs

* Relative weighting achieves balance between
activation and suppression

The pathway for smell processing
Be ol G G

ocH;

vanilla rose

Nose/olfactory | Chemical shape
. . detection
epithelium

v

Olfactory bulb

(in cortex)
N o~

Orbitofrontal

cortex Amygdala Hippocampus
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Simplified circuit

* Olfactory Epithelium (OE) — input
* Mitral — output

* PGe —lateral inhibitor
Smell B (similar to A) ! Smell A

Olfactory bulb

Epithelium
1
1
1
1
H\I\
1
1
1
1
1
!
1
1
1
A
1
1
1
1
1
1
1
1
1
1
1
E\/
1
1
1
1
)
, d
1
1
1
1

Competition on behavior level

Opposing interpretations
of scene

¢ Neural location related to
information encoded

* Progression of encoding
for increasingly complex
concepts

Classes of representation
Local representation

* Neural level: “grandmother” cell

* “Region” level: face region, place

region
Parahippocampal place area
_7 Fusiform face area

¥ Visual word form area

Lateral occipital cortex (shapes)
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Classes of representation
Fully distributed representation

* Every neuron/region plays a part
Sparsely-distributed representation
* Neural level: hyper-column for perceptual feature

Tanaka 2003, columns of
neurons for shape types in IT

* “Region” level:
face network in medial
temporal, lateral temporal,
anterior parietal

Principles of information coding:
binary

How many things can we represent with n
binary (gste? activation function) neurons?

* Complete sparse coding: n things

@ 00O OO0 0O0e

not
firing banana apple pear

* Complete distributed coding: 2" things

‘ O O banana . . ‘ blueberry
‘ ‘ O orange O . O apple O O . pear

o O . lime O®® cenon O O O No fruit

Biology of sparse coding

* Preserving energy — higher spiking rate
requires higher energy

[
* Representational fan-out S
—~1 million neurons in retina-> " & <
~140 million neurons in V1 S T An

(primary visual cortex)

tatiacha to

ot

—~50,000 neurons in cochlea ->
1.6 million neurons in Al
(primary auditory cortex)

hiear

xxxxxxxx
............

http://www.plosbiology.org/article/info:doi/10 Dimpanic

.1371/journal.pbio.0030137

Coding on a scale: sparsity

000w O0QOmmOO O
@ @O0 OO0 OO
O mid firing . O O happy O ‘ OOId O O ‘ hairy

not .
firing mood age amount hair

(sad — happy) (0-100) (bald — long)

Typically we will say “sparsity” is using
at most 10% of available neurons
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http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.0030137

Coding on a scale:
distributed + overlapping

‘ high firing O mid firing ?i:')itr1g

OO O = OO0~ O0O
0O 000 00O

OO0 OO0 OO0
mood age amount hair
(sad — happy) (0-100) (bald — long)

What does this encode? O O ‘

bald
mid-
hair
hairy

Coding on a scale:
distributed + overlapping
Responses for each property add together

.10 .1-sad 0.1.1-young 00.1-bald
.,50.5—-neutral 0.5.5-middle 00.5-middle

90.9-happy 0.9.9-o0ld 0 0.9 —full-hair
mood age amount hair
(sad — happy) (0-100) (bald — long)

How do we encode: sad (0), mid-age (.5), hairy (1.0)?
. jlevel; pattern;

1n2 n3
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Coding on a scale:
distributed + overlapping
Responses for each property add together

.10 .1-sad 0.1.1-young 00.1-bald
.50.5—neutral 0.5.5-middle 00.5-middle

90.9-happy 0.9.9-old 0 0.9 —full-hair
mood age amount hair
(sad — happy) (0-100) (bald —long)

How do we encode: happy-ish (.8), young-ish (.2),
some-hair (0.5)? Zj level; pattern;

nln2 n3

8 0 .8
0 2
0 .
9.

o N

5
1.5

N

Coding on a scale:
distributed + overlapping

Responses for each property add together

.10 .1-sad 0.1.1-young 00.1-bald
.50.5—-neutral 0.5.5-middle 00.5-middle

90.9-happy 0.9.9-o0ld 0 0.9 —full-hair
mood age amount hair
(sad — happy) (0-100) (bald — long)

What does this encode? 0.4 .8

What does this encode? 1.51.5
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Coding on a scale:
distributed + overlapping

Responses for each property add together

.10 .1-sad 0.1.1-young 00.1-bald
.50.5—neutral 0.5.5-middle 00.5-middle

90.9-happy 0.9.9-old 0 0.9 —full-hair
mood age amount hair
(sad — happy) (0-100) (bald — long)

& \¢ N

N
‘OO
O N
&

What does this encode? 0.4 .8 &
Very sad: contributes: 0x[101]=000
Middle-age: contributes .4x[011]=0.4 .4
Middle-hair: contributes .4x[001]=00 .4
Summing together: 0.4.8 3

Coding on a scale:
distributed + overlapping

Responses for each property add together

.10 .1-sad 0.1.1-young 00.1-bald
.,50.5-neutral 0.5.5-middle 00.5-middle

90.9-happy 0.9.9-o0ld 0 0.9 —full-hair
mood age amount hair
(sad — happy) (0-100) (bald — long)

. <°<\\/ o“"» N
What does this encode? 1.51.5 & °
Very happy: contributes 1x[101]=10 1
Middle-age: contributes .5x[011]=0.5.5
Bald: contributes Ox[001]=000

Summing together: 1515

Decoding with tuning curves

25

Use spiking rates from
multiple neurons to
determine encoded feature

[
o

Firing Rate
(Hz)

o . .wu

* 15 Hz firing rate for red 200400 800 1K 2K 4K 8K
Frequency (Hz)

neuron means sound 400 at10dB
or 800 Hz (at 10 dB)

* 15 Hz for red and 6 Hz for blue requires sound
800 Hz (at 10 dB)

Actual decoding incorporates noise/natural
variability in spiking

Population coding to find
direction of motion

Non-normalized population coding

_ pref
* Sdir = Zirisi

Sdir =
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Population coding to find
direction of motion

Non-normalized population coding

_ pref
* Sqir = Zz"'"i.s,-

b= e sller [T = [

Ly

Population coding to find
direction of motion

“Normalized” firing rate

min
.« p_ T [f pmin = 1,7 = ¢ for @
L™ _max _ ,.min _
ri ri Then # :z 1 2320.6.’
r 4
Normalized 7 will always be
between 0 and 1

o )L

Normalized firing rates

rmin=0 Hz, rm®=60 Hz

oRoRoNC
o G0

Normalized firing rates

rmin=0 Hz, rm&=60 Hz
0.5 0.5 0.16 0

olcRORC
spres [;] [_01] [3] [2] [_01]

]

r
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Population coding to find
direction of motion

For $,0p) divide normalized rate|

Population coding to find
direction of motion

“Normalized” pop’n coding For Spop divide normalized rate “Normalized” pop’n coding
by sum of all rates in neural by sum of all rates in neural
A _ Fi_ _pref population: ¥ . 7; Fi .U?“é’f population: Y. ; 7
. Spop — ZIEF‘; SI 7 b Spop ZIZ P‘} i 1
7 0.05 0.05

oRcNoNC ® O 0O G
e B w0 B0

Z?} =0.05+05+0.05+0=0.6

Find most-favored

0.05 11 o005 [0 1 0.83 tion direction, d
o I e = ) T I e i e
Another examp|e As.sume for all neurons Another examp|e Assume for all neurons
rmn=10 Hz, rMa=100 Hz rmin=10 Hz, rMa=100 Hz

® 0 ® O NORCRONE
SO O

1
50 — 10 70 — 10 10— 10 30 -10
100 100 100 100
2 0.4 0.6 0 0.2
4 6 0 2 J4+.6+.2=1.2
PP 0.33 0.5 0 0.16

§POP = [_3;3 a




A thlrd examp|e Assume for all neurons
rmin=20 Hz, rm=80 Hz

NoRCRORC
IO

20— 20 20 - 20 30— 20 50 — 20
80 80 80 80
7 0 0 0.13 0.38
0 0 13 3g .13+.38 =.51
FPOP 0 0 .26 0.76
“Pop _ —.76] .
.26

Decoding large neural codes

Information from neuron patterns
* Happy Bl 1 DN =W

* Old Il I NN
* Hairy I IR 1 TEN W
* Loud TN IE BN ER

Overlay of multiple patterns and noise
* What property is this?
mEm (N

Decoding large neural codes
Classifier:

* If consistent response, can learn pattern

* If irrelevant response, cannot learn helpful
pattern

M- e

Method:
* 500 trials — measure mood, record brain responses
* Make classifier from neural patterns in trials 1-250
* Find accuracy to predict mood in trials 251-500

53
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