1/31/2019

CISC 3250 Commands
Systems Neuroscienc

Symbols and keywords cause actions

M — * b=2 creates variable b with value 2

Matlab | ' e d=b+5 creates variable d with value
computed by adding 5 to value of b

* exit closes program

Professor Daniel Leeds
dleeds@fordham.edu
JMH 332

B . Variable names
= operation

* Avariable name is any valid identifier

= assigns value on right to variable on left — Starts with a letter, contains letters, digits, and
underscores (_) only

e b=5 valid — Cannot begin with a digit

« 5 = b invalid — Case sensitive:
username#userName#UserName

Standard arithmetic

Operators

* Addition: 5 + 2 evaluates to 7

* Subtraction: 5 - 2 evaluates to 3

* Multiplication: 5 * 2 evaluates to 10
* Division: 4 / 2 evaluates to 2

* Exponent: 5 ~ 2 evaluates to 25

Be careful with variable names

* NumSpikes=10

Variables are case-sensitive
* numspikes-5 error, did not capitalize N and S
* NumSpike-5 error, forgot letter s at end

Conditional behavior based on variable value Loglc

if x > 5
y=2;

else
y=5;

end; Basic syntax

if condition
actions-if-true

else
actions-if-false

end

Logi
Conditional behavior based on variable value osic
if x > 5
y=2;
else
y=57
end; Comparisons
e d<2, d>2 strict inequality
* d<=2, d>=2 semi-inequality
* d== equality
Logic combinations
e d>5 & d<8 the AND operation
e d<5 | d>8 the OR operation:

1/31/2019

Loop
Repeating similar action Output
for 1 = 1:4 1
disp (i)
end;

W N

Basic syntax

for var = VarValues
actions-to-repeat

end

Defining a vector

Vector is a list of numbers
* b=[42,35,68,-3]
e c=[-18 12 14]

Vector denoted by [] braces

Elements separated by commas , or blank
spaces

Counting in Matlab

a:b creates avector [a a+1l .. b-1 Db]

* 3:6 -> [3 4 5 6]

a:k:bcreatesavector [a a+k a+2k ..

* 3:4:15 -> [3 7 11 15]

b]

Accessing vector elements
a=[2.2 1.4 -5 3.5 -7.8];

* name (index) accesses single element
a(4) returns 3.5

e name (indexl:index?2) accesses set of elements
a(2:4) vreturns [1.4 -5 3.5]

e name (end) accesses final element

1/31/2019

Matrix indexing

Assume we have a 10x500 matrix of spike patterns
for 10 neurons spikeMat

* spikeMat (1, :) contains spikes for neuron 1
* spikeMat (4, :) contains spikes for neuron 4

In general:
* name (:,col) accesses all elements in column

Data

Data can be read from files
* load('classExample.mat');
* save('classExample2.mat','c','d");

List the loaded variables
* who
* whos

Study the variable
* size(spike record)
* plot (spike record)

Vector indexing

Assume we have a recording of spike rates for
100 seconds, recorded over non-overlapping
100 ms windows : vector SpikeRate

* SpikeRate (1) contains rate from 1-100ms
* SpikeRate (2) contains rate from 101-200ms

How do we see rates for 4-6s (4001-6000ms)
SpikeRate (41:60)

Semi-colons

; suppresses output of computation result to
screen

a=10-8
a =2 Printed to screen

b=10-8;

1/31/2019

Functions

=[0 3 -2 47];

Data are analyzed through functions
function name (input variable)

e sum(c) -> 5
* min(c) -> -2
* max(c) -> 4

* plot (spike record)

spikeExample

* From our course website
* Contains variable spikes — 10 neurons, 500 ms

* 0if no spike, 1 if spike

» Compute rates for each 100ms window:
rate (l)=sum(spikes(6,1:100));

rate (2)=sum(spikes(6,101:200
6,201:300
6,301:400
rate (5)=sum(spikes (6,401:500

7
rate

((())

(3)=sum (spikes ());
rate (4)=sum(spikes ())
((())

’

spikeExample — rate loop

* Compute rates for each 100ms window:
rate (l)=sum(spikes(6,1:100));

rate (2)=sum(spikes(6,101:200));
rate (3)=sum(spikes (6,201:300))
rate (4)=sum(spikes (6,301:400))
rate (5)=sum(spikes(6,401:500))

* Compute with for loop:
for i=1:5

rate (i)=sum(spikes (6,100* (i-1)+(1:100)))

end;

Plotting data

plOt([4I 51_2/ 8])

* From course site:
spikePlot (spikes)

1/31/2019

1/31/2019

Matrices: rows and columns

B=[2.2 1.4; -5 3.5; -7.8 4.3];

22 14
* Spaces/commas separate columns I -5 3.5]
¢ Semi-colons (;) separate rows -78 4.3
* name (row, col) accesses single element
B(2,1) returns -5

