Systems Neuroscience

Matlab, indexing and summarizing

Professor Daniel Leeds
dleeds@fordham.edu
JMH 332

New data set: object and noise perception

View objects and noise
Task: press button if pic $(\mathrm{t})=\mathrm{pic}(\mathrm{t}-1)$
Variables: accuracy, reaction time, object or non-object

Questions:

- What picture was shown?
-What button was pressed?
- How quickly was button pressed?

Results recorded in: ExptRecord

$$
\begin{aligned}
& \text { Last time in Matlab class... } \\
& \text { - Compute rates for each } 100 \mathrm{~ms} \text { window: } \\
& \text { rate }(1)=\operatorname{sum}(\operatorname{spikes}(6,1: 100)) / 0.1 \text {; } \quad \text { Let's oractice } \\
& \text { rate }(2)=\operatorname{sum}(\operatorname{spikes}(6,101: 200)) / 0.1 \text {; numberting } \\
& \text { rate }(3)=\operatorname{sum}(\operatorname{spikes}(6,201: 300)) / 0.1 \text {; } \\
& \text { rate }(4)=\operatorname{sum}(\operatorname{spikes}(6,301: 400)) / 0.1 \text {; } \\
& \text { rate }(5)=\operatorname{sum}(\operatorname{spikes}(6,401: 500)) / 0.1 \text {; } \\
& \text { - Compute with for loop: } \\
& \text { for } i=1: 5 \\
& \quad \text { rate }(i)=\operatorname{sum}(\operatorname{spikes}(6,100 *(i-1)+(1: 100))) / 0.1 \text {; } \\
& \text { end; }
\end{aligned}
$$

ExptRecord columns

- ExptRecord (:, 3) - 0 is noise, 1 is object
- ExptRecord (:,10) - 1 should press button, -1 should not press button
- ExptRecord (: ,11) - 1 subject presses button, 0 subject not press
- ExptRecord (: , 12) -0-1000ms, number of ms until button press
figure; plot(ExptRecord (: 3)) ;
axis ([0, 200, -.5, 1.5]);
figure;plot(sort (ExptRecord (: , 12))

Exploring your data

- size - data dimensions
- plot - display data contents in figure
- max - maximum value in vector
- min - minimum value in vector
- mean - mean (average) value in vector
- sort - order vector from low to high values
- hist - count frequency of values in vector
- MatVariable(:) - convert AxB matrix into single vector

Finding desired values

find (vector<number)

find ($c<2$)
Return indices in vector that are less than number
Example: vector $=[5,-1,0,12]$;
smallLocations=find (vector<2);
smallLocations contains [2 3]

Comparisons

- $d<2, d>2 \quad$ strict inequality
- $d<=2, d>=2$ semi-inequality
- $d==2 \quad$ equality

Looking at data subsets

Combining searches

Logic combinations

$\cdot d>5 \& d<8$ the AND operation - all conditions must be true

- $d<5 \mid d>8 \quad$ the OR operation - one or more conditions true

Example: find(vector<2 \& vector>-2)
Can combine results from multiple matrices:

```
vecB=[[12 3 8 0];
find(vector<2 | vecB>4)
```


Looking at data subsets

- Look at how often subject presses button when she should for objects and for noise:

Looking at data subsets

- Look at how often subject presses button when she should for objects and for noise:
objI=find (ExptRecord(:,3)==1);
noiseI=find (ExptRecord (:,3)==0);
length(find(ExptRecord(objI,10)==ExptRecord(objI,11)))
length(find(ExptRecord(noiseI,10)==ExptRecord(noiseI,11)))
..turns out they are equal

