CISC 4090 Theory of Computation

Context-Free Languages and Push Down Automata

Professor Daniel Leeds dleeds@fordham.edu JMH 332

Languages: Regular and Beyond	
 Regular: Captured by Regular Operations (a ∪ b) · c* · (d ∪ e) Recognized by Finite State Machines 	
Context Free Grammars: • Human language • Parsing of computer language	
	2

An example Context-Free Grammar		
Grammar G1 $A \rightarrow 0A1$ $A \rightarrow B$ $B \rightarrow #$	Example strings generated: #, 0#1, 00#11, 000#111, L(G1) = {0 ⁿ #1 ⁿ n≥0}	
Variables: A, B; Terminals: 0, 1, #		
One start variable: A		
Substitution rules/productions • Variable -> Variables. Terminals		

Example English Grammar	Example 1: S -> NP VP -> A NS V
Sentence -> NounPhrase VerbPhrase	-> A N V
NounPhrase -> Article NounSub	-> The Boy Sings
NounSub -> Noun Adjective NounSub	
VerbPhrase -> Verb Verb NounPhrase	Example 2:
	Litanipie Zi
Noun -> Girl Boy Duck Ball	S -> NP VP
	1
Noun -> Girl Boy Duck Ball Article -> The A	S -> NP VP
Noun -> Girl Boy Duck Ball	S -> NP VP -> A NS V

Formal CFG Definition

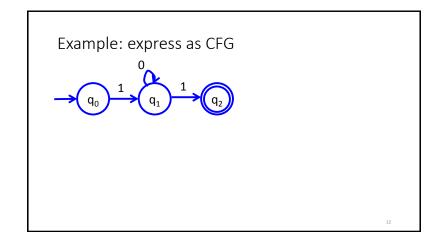
- A CFG is a 4-tuple (V, Σ, R, S)
- V is finite set of variables
- Σ finite set of terminals
- R finite set of rules
- ${\scriptstyle \bullet \, S \in V \text{ start variable}}$

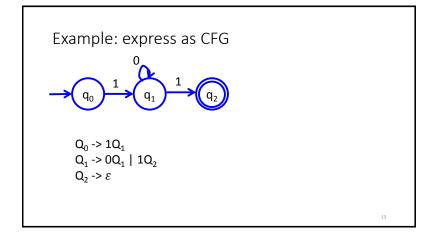
	Example rule	expansion:
Another example	S -> aSb	S -> SS
	aaSbb	aSb aSb
$G3 = ({S}, {a, b}, R, S)$	aaɛbb	aɛb aaSbb
R: $S \rightarrow aSb \mid SS \mid \varepsilon$	aabb	aɛb aaɛbb
$\mathbf{R} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 0 $		abaabb
Example strings generated: ε , ab, abab, aabb, aaabbbab, ababababab, abaaabbb,		
L(G3) = {a's & b's; each a is followed by a matching b, every b matches exactly one corresponding preceding a} (like parenthesis matching)		

Parenthesis-Math/Equation Grammar

$$G = (\{S, A\}, \{(,), 0, \dots, 9, +, *, -, /\}, R, S)$$

R: $S \rightarrow (S) | SS | AS | \varepsilon$
 $A \rightarrow 1|2|3|4|5|6|7|8|9|0| + | - | * |/$


Another example


$$G4 = (\{A, B, C\}, \{a, b, c\}, R, A)$$

 $R: A \rightarrow aA \mid BC \mid \varepsilon$
 $B \rightarrow Bb \mid C$
 $C \rightarrow c \mid \varepsilon$
Example strings generated: ε , aaa, cbbc, aacc
 $L(G4) = \{Hard to describe...\}$

Designing CFGs

Creativity required

- If CFL is union of simpler CFL, design grammar for simpler ones (G1, G2, G3), then combine: S -> G1 | G2 | G3
- If language is regular, can make CFG mimic DFA

Designing CFGs Creativity required • If language is regular, can make CFG mimic DFA Match each state with a single corresponding variable $Q=\{q_0,...,q_n\}$ $V=\{R_0,...,R_n\}$ Start state q_0 corresponds to state variable S -> R_0 Replace transition function with Production rule $\delta(q_i, a) = q_j$ $R_i \rightarrow aR_j$ Accept state q_k : transition to ε $R_k \rightarrow \varepsilon$

Chomsky Normal Form

CFG is in Chomsky normal form if every rule takes form:

 $A \to BC$

 $A \rightarrow a$

• B and C may not be the start variables

• The start variable may transition to ε

Any CFL can be generated by CFG in Chomsky Normal Form

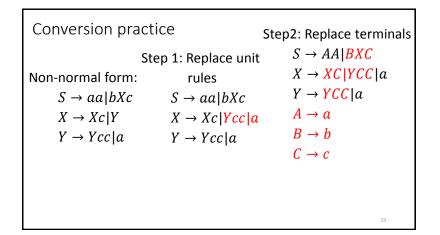
Converting to Chomsky Normal Form • $S_0 \rightarrow S$ where S was original start variable • Remove $A \rightarrow \varepsilon$ • Shortcut all unit rules Given $A \rightarrow B$ and $B \rightarrow u$, add $A \rightarrow u$ • Replace variable-terminal rules with variable-variable rules Given $A \rightarrow Bc$, add $U_C \rightarrow c$ and change A to $A \rightarrow BU_C$ • Replace rules $A \rightarrow u_1u_2u_3 \dots u_k$ with: $A \rightarrow u_1A_1, A_1 \rightarrow u_2A_2, A_2 \rightarrow u_3A_3, \dots, A_{k-2} \rightarrow u_{k-1}u_k$

Conversion practice
Non-normal form: $S \rightarrow aSa bX$ $X \rightarrow Ycc \varepsilon$ $Y \rightarrow d c$

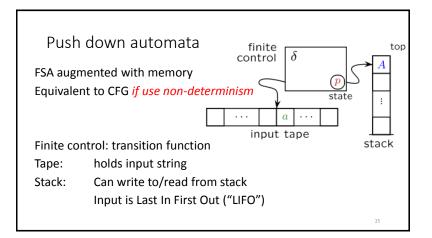
Conversion p Non-normal form: $S \rightarrow aSa bX$ $X \rightarrow Ycc \varepsilon$	Dractice Step 1: $S_0 \rightarrow S$, $S \rightarrow aSa bX$	Step 2: Remove ε , $S_0 \rightarrow S$ $S \rightarrow aSa bX b$ $X \rightarrow Ycc$ $Y \rightarrow d c$
$\begin{array}{c} X \rightarrow Tcc \varepsilon \\ Y \rightarrow d c \end{array}$	$\begin{array}{l} X \to Ycc \varepsilon \\ Y \to d c \end{array}$	Step 3: Use unit rules, $S_0 \rightarrow aSa bX b$ $S \rightarrow aSa bX b$ $X \rightarrow Ycc$ $Y \rightarrow d c$

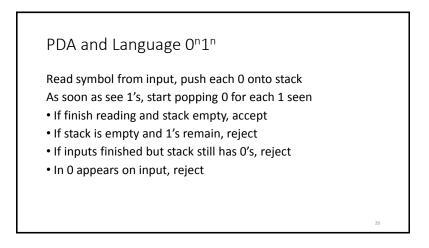
Conversion pra Step Step 3: Use unit rules, $S_0 \rightarrow aSa bX b$ $S \rightarrow aSa bX b$ $X \rightarrow Ycc$ $Y \rightarrow d c$	ctice St 4: Replace terminals $S_0 \rightarrow ASA BX b$ $S \rightarrow ASA BX b$ $X \rightarrow YCC$ $Y \rightarrow d c$ $A \rightarrow a$ $B \rightarrow b$ $C \rightarrow c$	ep 5: Reduce multi-variable $S_0 \rightarrow AN BX b$ s, $S \rightarrow AN BX b$ $X \rightarrow YM$ $Y \rightarrow d c$ $A \rightarrow a$ $B \rightarrow b$ $C \rightarrow c$ $N \rightarrow SA$ $M \rightarrow CC$
		19

Ambiguity – examples	
A grammar may generate a string in multiple ways	
Math example: Expr \rightarrow Expr + Expr Expr × Expr Expr a	
English example:	
the girl touches the boy with the flower	
	20


Ambiguity – definitions

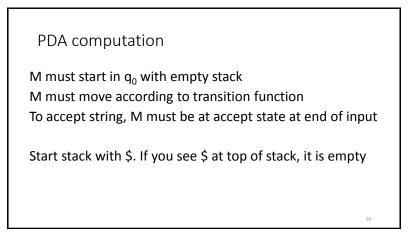
A grammar generates a string ambiguously if there are two or more different parse trees


Definitions:


- <u>Leftmost derivation</u>: at each step the leftmost remaining variable is replaced
- *w* is derived **ambiguously** in CFG G if there exist more than one leftmost derivations

Conversion practice	
Non-normal form: $S \rightarrow aa bXc$ $X \rightarrow Xc Y$ $Y \rightarrow Ycc a$	

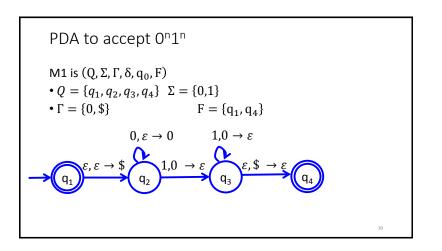
Conversion practice Step2: Replace terminals $S \rightarrow AA BXC$ $X \rightarrow XC YCC a$ $Y \rightarrow YCC a$ $A \rightarrow a$ $B \rightarrow b$ $C \rightarrow c$	Step 3: Reduce multi-var $S \rightarrow AA BN$ $X \rightarrow XC YM a$ $Y \rightarrow YM a$ $A \rightarrow a$ $B \rightarrow b$ $C \rightarrow c$ $N \rightarrow XC$ $M \rightarrow CC$
---	---

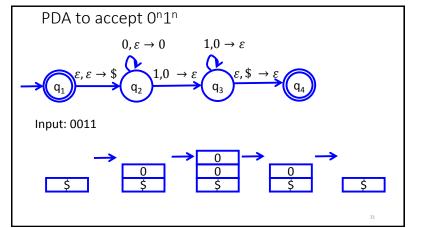


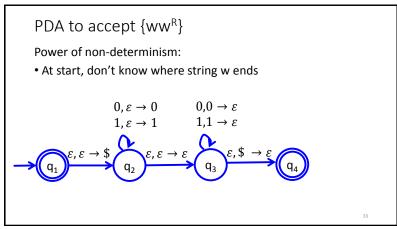
Definition of PDA

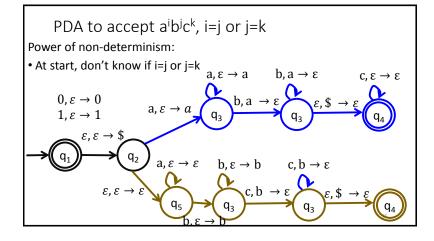
A PDA is a 6-tuple $(Q,\Sigma,\Gamma,\delta,q_0,F)$ where Q, $\Sigma,\Gamma,$ and F are finite sets

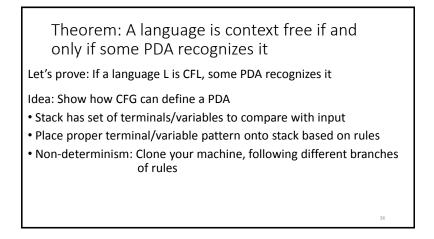
- Q is sets of states
- $\bullet\,\Sigma$ is the input alphabet
- Γ is the stack alphabet
- $\delta: Q \times \Sigma \epsilon \times \Gamma \epsilon \to P(Q \times \Gamma \epsilon)$ is transition function
- $q_0 \in Q$ is start state
- $F \subseteq Q$ is set of accept states

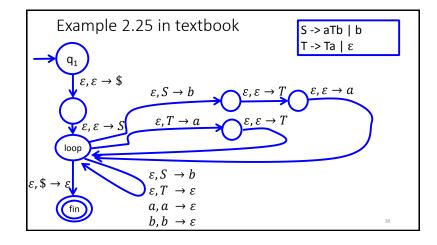

Understanding transition δ

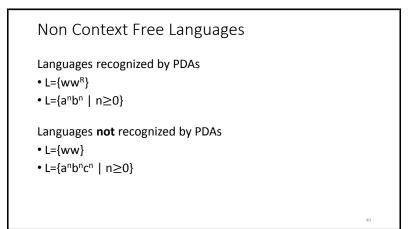

 $a, b \rightarrow c$ means:

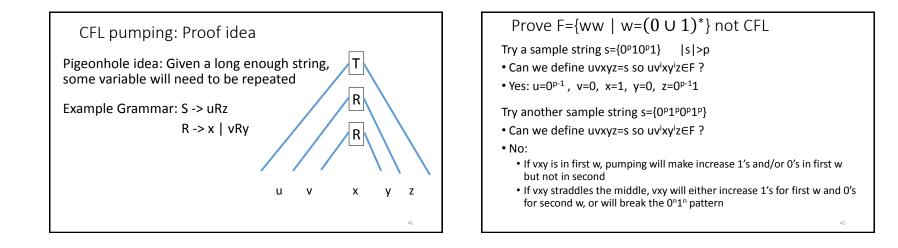

- when you read a from tape and b is on top of stack
- replace b with c on top of stack


a, b, or c can be ε


- \bullet If a is ε then change stack without reading a symbol
- \bullet If b is ε then push new symbol c without popping b
- If c is ε then no new symbol pushed, only pop b




$CFG \rightarrow PDA$


- If top of stack is variable, sub one right-hand rule for the variable
- If top of stack is terminal, keep going iff terminal matches input
- If top of stack is \$, accept!

Regular languages vs. CFLs

- CFGs define CFLs
- PDAs recognize CFLs and Regular languages
- FSAs recognize Regular languages, but not CFLs
- CFLs and Regular languages not equivalent

