
10/7/2019

1

CISC 4090
Theory of Computation

Context-Free Languages and
Push Down Automata

Professor Daniel Leeds

dleeds@fordham.edu

JMH 332

Languages: Regular and Beyond

Regular:

•Captured by Regular Operations a ∪ b ∙ c∗ ∙ d ∪ e

•Recognized by Finite State Machines

Context Free Grammars:

•Human language

•Parsing of computer language

2

An example Context-Free Grammar

Grammar G1

A → 0A1

A → B

B → #

Variables: A, B; Terminals: 0, 1, #

One start variable: A

Substitution rules/productions

• Variable -> Variables, Terminals 3

Example strings generated:
#, 0#1, 00#11, 000#111, …

L(G1) = {0n#1n | n≥0}

Example English Grammar

Sentence -> NounPhrase VerbPhrase

NounPhrase -> Article NounSub

NounSub -> Noun | Adjective NounSub

VerbPhrase -> Verb | Verb NounPhrase

Noun -> Girl | Boy | Duck | Ball

Article -> The | A

Verb -> Throws | Sings

4

Example 1:
S -> NP VP

-> A NS V
-> A N V
-> The Boy Sings

Example 2:
S -> NP VP

-> A NS V
-> A N V
-> A Duck Throws

10/7/2019

2

Formal CFG Definition

A CFG is a 4-tuple V, Σ, R, S

•V is finite set of variables

•Σ finite set of terminals

•R finite set of rules

• S ∈ V start variable

5

Another example

G3 = S , a, b , R, S

R: S → aSb SS ε

7

Example strings generated:
ε, ab, abab, aabb, aaabbbab,
ababababab, abaaabbb, …

L(G3) = {a’s & b’s; each a is followed by a matching b, every
b matches exactly one corresponding preceding a}
(like parenthesis matching)

Example rule expansion:

S -> aSb S -> SS
aaSbb aSb aSb
aaεbb aεb aaSbb
aabb aεb aaεbb

abaabb

Parenthesis-Math/Equation Grammar

G = S, A , , , 0, … , 9, +,∗, −,/ , R, S

R: S → (S) SS AS| ε

A → 1 2 3 4 5 6 7 8 9 0 + | − | ∗ |/

8

Another example

G4 = A, B, C , a, b, c , R, A

R: A → aA BC ε

B → Bb | C

C → c | ε

10

Example strings generated: ε, aaa, cbbc, aacc

L(G4) = {Hard to describe… }

10/7/2019

3

Designing CFGs
Creativity required

• If CFL is union of simpler CFL, design grammar for simpler
ones (G1, G2, G3), then combine: S -> G1 | G2 | G3

• If language is regular, can make CFG mimic DFA

11

Example: express as CFG

12

q0 q1

1

0

q2

1

Example: express as CFG

13

q0 q1

1

0

q2

1

Q0 -> 1Q1

Q1 -> 0Q1 | 1Q2

Q2 -> 𝜀

Designing CFGs
Creativity required

• If language is regular, can make CFG mimic DFA

Match each state with a single corresponding variable

Q={q0,…,qn} V={R0, …, Rn}

Start state q0 corresponds to state variable S -> R0

Replace transition function with Production rule

𝛿 𝑞𝑖 , 𝑎 = 𝑞𝑗 𝑅𝑖 → 𝑎𝑅𝑗

Accept state qk : transition to 𝜀 𝑅𝑘 → 𝜀

14

10/7/2019

4

Chomsky Normal Form

CFG is in Chomsky normal form if every rule takes form:

A → BC

A → a

•B and C may not be the start variables

• The start variable may transition to 𝜀

Any CFL can be generated by CFG in Chomsky Normal Form

15

Converting to Chomsky Normal Form

• 𝑆0 → 𝑆 where S was original start variable

• Remove 𝐴 → 𝜀

• Shortcut all unit rules

Given 𝐴 → 𝐵 and 𝐵 → 𝑢 , add 𝐴 → 𝑢

• Replace variable-terminal rules with variable-variable rules

Given 𝐴 → 𝐵c, add 𝑈𝐶 → 𝑐 and change A to 𝐴 → 𝐵𝑈𝐶

• Replace rules 𝐴 → 𝑢1𝑢2𝑢3…𝑢𝑘 with:

𝐴 → 𝑢1𝐴1, 𝐴1 → 𝑢2𝐴2, 𝐴2 → 𝑢3𝐴3, …, 𝐴𝑘−2 → 𝑢𝑘−1𝑢𝑘 16

Conversion practice

Non-normal form:

𝑆 → 𝑎𝑆𝑎|𝑏𝑋

𝑋 → 𝑌𝑐𝑐|𝜀

𝑌 → 𝑑|𝑐

17

Conversion practice

Non-normal form:

𝑆 → 𝑎𝑆𝑎|𝑏𝑋

𝑋 → 𝑌𝑐𝑐|𝜀

𝑌 → 𝑑|𝑐

18

Step 1: S0->S,
𝑆0 → 𝑆

𝑆 → 𝑎𝑆𝑎|𝑏𝑋

𝑋 → 𝑌𝑐𝑐|𝜀

𝑌 → 𝑑|𝑐

Step 2: Remove 𝜀,
𝑆0 → 𝑆

𝑆 → 𝑎𝑆𝑎|𝑏𝑋|𝑏

𝑋 → 𝑌𝑐𝑐

𝑌 → 𝑑|𝑐

Step 3: Use unit rules,
𝑆0 → 𝑎𝑆𝑎|𝑏𝑋|𝑏

𝑆 → 𝑎𝑆𝑎|𝑏𝑋|𝑏

𝑋 → 𝑌𝑐𝑐

𝑌 → 𝑑|𝑐

10/7/2019

5

Conversion practice

19

Step 3: Use unit rules,
𝑆0 → 𝑎𝑆𝑎|𝑏𝑋|𝑏

𝑆 → 𝑎𝑆𝑎|𝑏𝑋|𝑏

𝑋 → 𝑌𝑐𝑐

𝑌 → 𝑑|𝑐

Step 4: Replace terminals,
𝑆0 → 𝐴𝑆𝐴|𝐵𝑋|𝑏

𝑆 → 𝐴𝑆𝐴|𝐵𝑋|𝑏

𝑋 → 𝑌𝐶𝐶

𝑌 → 𝑑|𝑐

𝐴 → 𝑎

𝐵 → 𝑏

𝐶 → 𝑐

Step 5: Reduce multi-variable
𝑆0 → 𝐴𝑁|𝐵𝑋|𝑏

𝑆 → 𝐴𝑁|𝐵𝑋|𝑏

𝑋 → 𝑌𝑀

𝑌 → 𝑑|𝑐

𝐴 → 𝑎

𝐵 → 𝑏

𝐶 → 𝑐

𝑁 → 𝑆𝐴

𝑀 → 𝐶𝐶

Ambiguity – examples

A grammar may generate a string in multiple ways

Math example:

Expr → Expr + Expr Expr × Expr Expr | a

English example:

the girl touches the boy with the flower

20

Ambiguity – definitions

A grammar generates a string ambiguously if there are two or
more different parse trees

Definitions:

• Leftmost derivation: at each step the leftmost remaining variable
is replaced

• w is derived ambiguously in CFG G if there exist more than one
leftmost derivations

21

Conversion practice

Non-normal form:

𝑆 → 𝑎𝑎|𝑏𝑋𝑐

𝑋 → 𝑋𝑐|𝑌

𝑌 → 𝑌𝑐𝑐|𝑎

22

10/7/2019

6

Conversion practice

Non-normal form:

𝑆 → 𝑎𝑎|𝑏𝑋𝑐

𝑋 → 𝑋𝑐|𝑌

𝑌 → 𝑌𝑐𝑐|𝑎

23

Step 1: Replace unit

rules

𝑆 → 𝑎𝑎|𝑏𝑋𝑐

𝑋 → 𝑋𝑐|𝑌𝑐𝑐|𝑎

𝑌 → 𝑌𝑐𝑐|𝑎

Step2: Replace terminals

𝑆 → 𝐴𝐴|𝐵𝑋𝐶

𝑋 → 𝑋𝐶|𝑌𝐶𝐶|𝑎

𝑌 → 𝑌𝐶𝐶|𝑎

𝐴 → 𝑎

𝐵 → 𝑏

𝐶 → 𝑐

Conversion practice

24

Step2: Replace terminals

𝑆 → 𝐴𝐴|𝐵𝑋𝐶

𝑋 → 𝑋𝐶|𝑌𝐶𝐶|𝑎

𝑌 → 𝑌𝐶𝐶|𝑎

𝐴 → 𝑎

𝐵 → 𝑏

𝐶 → 𝑐

Step 3: Reduce multi-var

𝑆 → 𝐴𝐴|𝐵𝑁

𝑋 → 𝑋𝐶|𝑌𝑀|𝑎

𝑌 → 𝑌𝑀|𝑎

𝐴 → 𝑎

𝐵 → 𝑏

𝐶 → 𝑐

𝑁 → 𝑋𝐶

𝑀 → 𝐶𝐶

Push down automata

FSA augmented with memory

Equivalent to CFG if use non-determinism

Finite control: transition function

Tape: holds input string

Stack: Can write to/read from stack

Input is Last In First Out (“LIFO”)

25

PDA and Language 0n1n

Read symbol from input, push each 0 onto stack

As soon as see 1’s, start popping 0 for each 1 seen

• If finish reading and stack empty, accept

• If stack is empty and 1’s remain, reject

• If inputs finished but stack still has 0’s, reject

• In 0 appears on input, reject

26

10/7/2019

7

Definition of PDA

A PDA is a 6-tuple Q, Σ, Γ, δ, q0, F where Q, Σ, Γ, and F
are finite sets

• Q is sets of states

• Σ is the input alphabet

• Γ is the stack alphabet

• δ: Q × Σε × Γε → P Q × Γε is transition function

• q0 ∈ Q is start state

• F ⊆ Q is set of accept states

27

PDA computation

M must start in q0 with empty stack

M must move according to transition function

To accept string, M must be at accept state at end of input

Start stack with $. If you see $ at top of stack, it is empty

28

Understanding transition 𝛿

𝑎, 𝑏 → 𝑐 means:

• when you read a from tape and b is on top of stack

• replace b with c on top of stack

a, b, or c can be 𝜀

• If a is 𝜀 then change stack without reading a symbol

• If b is 𝜀 then push new symbol c without popping b

• If c is 𝜀 then no new symbol pushed, only pop b

29

PDA to accept 0n1n

M1 is Q, Σ, Γ, δ, q0, F

• 𝑄 = 𝑞1, 𝑞2, 𝑞3, 𝑞4 Σ = 0,1

• Γ = 0, $ F = q1, q4

30

q1 q2 q3

0, 𝜀 → 0

𝜀, 𝜀 → $
q4

1,0 → 𝜀

1,0 → 𝜀

𝜀, $ → 𝜀

10/7/2019

8

PDA to accept 0n1n

31

q1 q2 q3

0, 𝜀 → 0

𝜀, 𝜀 → $
q4

1,0 → 𝜀

1,0 → 𝜀

𝜀, $ → 𝜀

$ $
0

$
0
0

$
0

$

Input: 0011

PDA to accept {wwR}

33

Power of non-determinism:

• At start, don’t know where string w ends

q1 q2 q3

0, 𝜀 → 0
1, 𝜀 → 1

𝜀, 𝜀 → $
q4

𝜀, 𝜀 → 𝜀

0,0 → 𝜀
1,1 → 𝜀

𝜀, $ → 𝜀

PDA to accept aibjck, i=j or j=k

35

Power of non-determinism:

• At start, don’t know if i=j or j=k

q1 q2

q5

𝜀, 𝜀 → $

q4

𝜀, 𝜀 → 𝜀 𝜀, $ → 𝜀

0, 𝜀 → 0
1, 𝜀 → 1

a, 𝜀 → 𝜀

q3 q4
a, 𝜀 → 𝑎

b, a → ε

a, ε → a

q3

b, a → ε

𝜀, $ → 𝜀

c, ε → ε

q3

c, b → ε

b, ε → b

q3

c, b → ε

b, ε → b

Theorem: A language is context free if and
only if some PDA recognizes it

Let’s prove: If a language L is CFL, some PDA recognizes it

Idea: Show how CFG can define a PDA

• Stack has set of terminals/variables to compare with input

• Place proper terminal/variable pattern onto stack based on rules

• Non-determinism: Clone your machine, following different branches
of rules

36

10/7/2019

9

CFG -> PDA

• If top of stack is variable, sub one right-hand rule for the variable

• If top of stack is terminal, keep going iff terminal matches input

• If top of stack is $, accept!

37

Example 2.25 in textbook

38

S -> aTb | b
T -> Ta | ε

q1

𝜀, 𝜀 → $

loop

𝜀, 𝜀 → 𝑆

𝜀, 𝑆 → 𝑏 𝜀, 𝜀 → 𝑇 𝜀, 𝜀 → 𝑎

𝜀, 𝑇 → 𝑎 𝜀, 𝜀 → 𝑇

𝜀, 𝑆 → 𝑏
𝜀, 𝑇 → 𝜀
𝑎, 𝑎 → 𝜀
𝑏, 𝑏 → 𝜀

fin

𝜀, $ → 𝜀

Regular languages vs. CFLs

•CFGs define CFLs

•PDAs recognize CFLs and Regular languages

• FSAs recognize Regular languages, but not CFLs

•CFLs and Regular languages not equivalent

39

Non Context Free Languages

Languages recognized by PDAs

• L={wwR}

• L={anbn | n≥0}

Languages not recognized by PDAs

• L={ww}

• L={anbncn | n≥0}

40

10/7/2019

10

CFL pumping: Proof idea

Pigeonhole idea: Given a long enough string,
some variable will need to be repeated

Example Grammar: S -> uRz

R -> x | vRy

41

T

R

R

u v x y z

Prove F={ww | w= 0 ∪ 1 ∗} not CFL

Try a sample string s={0p10p1} |s|>p

• Can we define uvxyz=s so uvixyiz∈F ?

• Yes: u=0p-1 , v=0, x=1, y=0, z=0p-11

Try another sample string s={0p1p0p1p}

• Can we define uvxyz=s so uvixyiz∈F ?

• No:
• If vxy is in first w, pumping will make increase 1’s and/or 0’s in first w

but not in second

• If vxy straddles the middle, vxy will either increase 1’s for first w and 0’s
for second w, or will break the 0n1n pattern

42

