CISC 4090 Theory of Computation

Finite state machines \& Regular languages

Professor Daniel Leeds dleeds@fordham.edu JMH 332

Stereotypical computer

Super-simple computers

Small number of potential inputs
Small number of potential outputs/actions

Automatic door

Desired behavior

- Person approaches entryway, door opens

- Person goes through entryway, door stays open
- Person is no longer near entryway, door closes
- Nobody near entryway, door stays closed

Two states: Open, Closed
Two inputs: Front-sensor, Back-sensor
Finite state machine

Graph and table representations

	Front	Back	Neither	Both
Closed	Open	Open	Closed	Open
Open	Open	Open	Closed	Open

Coding a combination lock

- Example accepted string: 1101
- What are all strings that this model will accept? String ending with 1 or string containing 1 and ending with 00

More finite state machine applications

- Text parsing
- Traffic light
- Pac-Man
- Electronic locks

- A finite automaton M1 with 3 states
- Start state q1; accept state q2 (double circle)

Formal definition of Finite State Automaton

Finite state automaton is a 5-tuple ($\left.Q, \Sigma, \delta, q_{0}, F\right)$

- Q is a finite set called states
- Σ is a finite set called the alphabet
- $\delta: Q \times \Sigma \longrightarrow Q$ is the transition function
- $q_{0} \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

Describe M1 using formal definition

- $Q=\left\{\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \boldsymbol{q}_{3}\right\}$
- $\Sigma=\{0,1\}$
- Start state: \boldsymbol{q}_{1}
- $\mathrm{F}=\left\{\boldsymbol{q}_{2}\right\}$
- $\delta=$

	0	1
q_{1}	q_{1}	q_{2}
q_{2}	q_{3}	q_{2}
q_{3}	q_{2}	q_{2}

Language of M1

If A is set of all strings accepted by M, A is language of M

- $L(M)=A$

A machine may accept many strings, but only one language

- M accepts a string
- M recognizes a language

Describe L(M1)=A

- $A=\{w \mid w e n d s$ with 1 or w contains at least one 1 and ends in 00\}

Describe M2 using formal definition

$\mathrm{M} 1=\left(Q,\{0,1\}, \delta, q_{0},\left\{q_{2}\right\}\right)^{0}$

- $Q=\left\{q_{1}, q_{2}\right\}$
- Start state: q_{1}

$$
\cdot \delta=\begin{array}{c|c|c|}
\hline & 0 & 1 \\
\hline & \mathrm{q} 1 & \mathrm{q} 1 \\
\hline & \mathrm{q} 2 \\
\hline & \mathrm{q} 2 & \mathrm{q} 1
\end{array} \mathrm{q} 2 \mathrm{l}
$$

What is the language of M 2 ?
$L(M 2)=\{w \mid w$ ends with at least one 1$\}$

Perform modulo arithmetic

Let $\Sigma=\{$ RESET, $0,1,2\}$
Construct M5 to accept a string only if the sum of each input symbol is multiple of 3 , and RESET sets the sum back to 0

More modulo arithmetic

Generalize M5 to accept if sum of symbols is a multiple of i instead of 3

Definition of M accepting a string

Let $\mathrm{M}=(Q, \Sigma, \delta, q 0, F)$ be a finite automaton and let $w=w_{1} w_{2} \cdots w_{n}$

Then M accepts w if a sequence of states $\mathrm{r}_{0}, r_{1}, \ldots, r_{n}$ in Q exists with 3 conditions

- $r_{0}=q_{0}$
- $\delta\left(r_{i}, w_{i+1}\right)=r_{i+1}$ for $i=0,1, \cdots, n-1$
- $r_{n} \in F$

Regular languages

Definition: a language is called a regular language if some finite automaton recognizes it
equivalently
All of the strings in a regular language are accepted by some finite automaton

Designing finite automata (FAs)

- Determine what you need to remember
- How many states needed for your task?
- Set start and finish states
- Assign transitions
- Check your solution
- Should accept $w \in L$
- Should reject $w \notin L$
- Be careful about ε !

FA design practice!

- FA to accept language where number of 1's is odd (page 43)

- FA to accept string with 001 as substring (page 44)
 substring abab (next page!)

Regular operations

Let A and B be languages. We define 3 regular operations:

- Union: $\mathrm{A} \cup B=\{x \mid x \in A$ or $x \in B\}$
- Concatenation: $A \cdot B=\{x y \mid x \in A$ and $y \in B\}$
- Star: $A^{*}=\left\{x_{1} x_{2} \cdots x_{k} \mid k \geq 0\right.$ and each $\left.x_{i} \in A\right\}$

Examples of regular operations

Let $A=\{$ good, bad $\}$ and $B=\{$ boy, girl $\}$
What is:

- $A \cup B=$ \{good, bad, boy, girl\}
- $A \cdot B=$ \{goodboy, goodgirl, badboy, badgirl\}
- $A^{*}=$
$\{\varepsilon$, good, bad, goodgood, goodbad, badgood, badbad, $\cdots\}$

Closure

A collection of objects is closed under an operation if applying that operation to members of the collection returns an object in the collection

Regular languages are closed under $U, \cdot, *$

Closure of Union

Theorem 1.25: The class of regular languages is closed under the union operation
Proof by construction

Example union

$A=\{w \mid w$ ends in 111$\}$

Closure of Union - Proof by Construction

Let us assume M 1 recognizes language L 1

- Define M1 as M1 = (Q, $\left.\Sigma, \delta_{1}, \mathrm{q}_{0}, \mathrm{~F}_{1}\right)$

Let us assume M2 recognizes language L2

- Define M2 as M2 $=\left(R, \Sigma, \delta_{2}, r_{0}, F_{2}\right)$

Proof by construction: Construct M3 to recognize L3 $=$ L1 U L2

- Let M3 be defined as M3 $=\left(S, \Sigma, \delta_{3}, s_{0}, F_{3}\right)$

Example union

AUB M5
Simulate M1 and M2 states

Closure of Union - Proof by Construction

- Let M3 be defined as M3 $=\left(S, \Sigma, \delta_{3}, s_{0}, F_{3}\right)$

Use each state of M3 to simulate being in a state of M1 and another state in M2 simultaneously

M3 states: $S=\left\{\left(q_{i}, r_{j}\right) \mid q_{i} \in Q\right.$ and $\left.r_{j} \in R\right\}$
Start state: $\mathrm{s}_{0}=\left(\mathrm{q}_{0}, \mathrm{r}_{0}\right)$
Accept state: $\mathrm{F}_{3}=\left\{\left(\mathrm{q}_{\mathrm{i}}, \mathrm{r}_{\mathrm{j}}\right) \mid \mathrm{q}_{\mathrm{i}} \in \mathrm{F}_{1}\right.$ or $\left.\mathrm{r}_{\mathrm{j}} \in \mathrm{F}_{2}\right\}$
Transition function: $\delta_{3}\left(\left(q_{i}, r_{j}\right), \mathrm{x}\right)=\left(\delta_{3}\left(q_{i}, x\right), \delta_{3}\left(q_{j}, x\right)\right)$

Closure of Concatenation

Theorem 1.26: The class of regular languages is closed under the concatenation operation

- If A 1 and A 2 are regular languages, then so is $A 1 \cdot A 2$
- Challenge: How do we know when M1 ends and M2 begins?

Determinism vs. non-determinism

Determinism: Single transition allowed given current state and given input

Non-determinism:

- multiple transitions allowed for current state and given input
- transition permitted for null input ε

The language of M10

- List some accepted strings

$$
110 \text { - at third entry, we're in states }\left\{q_{1}, q_{3} \text {, and } q_{4}\right\}
$$

-What is $\mathrm{L}(\mathrm{M} 10)$?
\{w | w contains 11 or 101\}

NFA construction practice

Build an NFA that accepts all strings over $\{0,1\}$ with 1 in the third position from the end

NFA construction practice

Build an NFA that accepts all strings over $\{0,1\}$ with 1 in the third position from the end

If path is at q_{4} and you receive more input, your path terminates

NFA -> DFA
Build an NFA that accepts all strings over $\{0,1\}$ with 1 in the third position from the end

Formal definition of
 Nondeterministic Finite Automaton
 Similar to DFA: a 5 -tuple ($Q, \Sigma, \delta, q_{0}, F$)
 - Q is a finite set called states
 $-\Sigma$ is a finite set called the alphabet
 - $\delta: Q \times \Sigma \varepsilon \rightarrow P(Q)$ is the transition function
 - $q_{0} \in Q$ is the start state
 - $F \subseteq Q$ is the set of accept states

Describe M10 using formal definition

$\mathrm{M} 1=\left(Q, \Sigma, \delta, q_{0}, F\right)$
$\cdot Q=\left\{\mathbf{q}_{0}, \mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}\right\}$
$\cdot \Sigma=\{0,1\}$

- Start state: q_{0}
- $\mathrm{F}=\left\{\mathbf{q}_{3}\right\}$

Equivalence of NFAs and DFAs

NFAs and DFAs recognize the same class of languages

Two machines are equivalent if they recognize the same language

Every NFA has an equivalent DFA

Equivalence of NFAs and DFAs

NFA

$$
\mathrm{N} 1=\left(\mathbf{Q}, \Sigma, \delta, \mathbf{q}_{0}, \mathbf{F}\right)
$$

Define DFA

$$
\mathrm{M} 1=\left(\mathbf{R}, \Sigma, \delta^{\mathrm{D}}, \mathrm{r}_{0}, \mathbf{F}^{\mathrm{D}}\right)
$$

- R=P(Q) $\quad--R=\left\{\{ \},\left\{q_{0}\right\}, \ldots,\left\{q_{n}\right\},\left\{q_{1}, q_{2}\right\}, \ldots\left\{q_{n-1}, q_{n}\right\}, \ldots\right\}$ every combination of states in Q
- $r_{0}=\left\{q_{0}\right\}$
- $\mathbf{F}^{\mathbf{D}}=\{\mathbf{s} \in \mathbf{R} \mid \mathbf{s}$ contains at least 1 accept state for $\mathbf{N} 1\}$
- $\delta^{D}\left(r_{i}, x\right)$ Consider all states q_{j} in r_{i}, find r_{k} that is union of outputs for $N 1$'s $\delta\left(q_{j}, \mathbf{x}\right)$ for all q_{j}

Consider NFA N1

Language:
$L(N 1)=\{w \mid w$ begins with 0 , ends with 01, every 1 in w is preceded by a 0$\}$

Union Closure with NFAs

- Proofs by construction - fewer states!
- Any NFA proof applies to DFA

Given two regular languages A_{1} and A_{2} recognized by $N 1$ and N 2 respectively, construct N to recognize $\mathrm{A}_{1} \cup \mathrm{~A}_{2}$

Let's consider two languages

L1: start with 0 , end with 1
L2: start with 1, end with 0

Construct machines for each languages
Construct machines N3 to recognize L1 U L2

Closure of regular languages under union
Let $\mathrm{N} 1=\left(\mathrm{Q}, \Sigma, \delta_{1}, \mathrm{q}_{0}, \mathrm{~F}_{1}\right)$ recognize L 1
Let $\mathrm{N} 2=\left(\mathrm{R}, \Sigma, \delta_{2}, \mathrm{r}_{0}, \mathrm{~F}_{2}\right)$ recognize L2 $\mathrm{N} 3=\left(\mathrm{Q}_{3}, \Sigma, \delta_{3}, \mathrm{~s}_{0}, \mathrm{~F}_{3}\right)$ will recognize L1 UL2 iff ${ }^{\text {struction }}$.
$\mathrm{Q}_{3}=\mathrm{Q} \cup \mathrm{R} \cup\left\{\mathrm{s}_{0}\right\}$
Start state: s_{0}
$\mathrm{F}_{1}=\mathrm{F}_{2} \cup \mathrm{~F}_{3}$

$$
\delta_{3}(q, a)=\left\{\begin{array}{lc}
\delta_{1}(\mathrm{q}, \mathrm{a}) & \text { if } \mathrm{q} \in \mathrm{Q} \\
\delta_{2}(\mathrm{q}, \mathrm{a}) & \text { if } q \in \mathrm{R} \\
\left\{\mathrm{q}_{0}, \mathrm{r}_{0}\right\} & \text { if } q=s_{0} \text { and } a=\varepsilon
\end{array}\right.
$$

Closure under concatenation

Given two regular languages A_{1} and A_{2} recognized by N 1 and N 2 respectively, construct N to recognize $\mathrm{A}_{1} \cdot \mathrm{~A}_{2}$

Closure of regular languages under concatenation Let $\mathrm{N} 1=\left(\mathrm{Q}, \Sigma, \delta_{1}, \mathrm{q}_{0}, \mathrm{~F}_{1}\right)$ recognize L1 Let $\mathrm{N} 2=\left(\mathrm{R}, \Sigma, \delta_{2}, \mathrm{r}_{0}, \mathrm{~F}_{2}\right)$ recognize L2

Closure under star
Prove if A_{1} is regular, A_{1}^{*} is also regular

Star: L ${ }_{1}^{*}$

ε

Closure of regular languages under star
Let $\mathrm{N} 1=\left(\mathrm{Q}, \Sigma, \delta_{1}, \mathrm{q}_{0}, \mathrm{~F}_{1}\right)$ recognize L 1
$N 3=\left(Q_{3}, \Sigma, \delta_{3}, s_{0}, F_{3}\right)$ will recognize $L 1^{*}$ iff
$\mathrm{Q}_{3}=\mathrm{Q} \cup\left\{\mathrm{s}_{0}\right\}$

$$
\begin{aligned}
& \text { This is a good exammole } \\
& \text { how to write upple of } \\
& \text { general prooof a } \\
& \text { construction }
\end{aligned}
$$

Start state: s_{0}
$\mathrm{F}_{1}=\mathrm{F}_{3} \cup\left\{\mathrm{~s}_{0}\right\}$

$$
\delta_{3}(q, a)=\left\{\begin{array}{cc}
\delta_{1}(\mathrm{q}, \mathrm{a}) & \text { if } \mathrm{q} \in \mathrm{Q} \\
\mathrm{q}_{0} & \text { if } \mathrm{q}=\mathrm{s}_{0} \text { and } \mathrm{a}=\varepsilon \\
\mathrm{s}_{0} & \text { if } \mathrm{q} \in \mathrm{~F}_{1} \text { and } \mathrm{a}=\varepsilon
\end{array}\right.
$$

Regular expressions - formal definition

R is a regular expression if R is

- a, for some a in alphabet Σ
$\cdot \varepsilon$
- \varnothing
- R1 U R2, where R1 and R2 are regular expressions
- R1 • R2, where R1 and R2 are regular expressions
- R1*, where R1 is a regular expression

This is a recursive definition

Examples of Regular Expressions

-0*10* $=\{1,010,100,00100,001, \ldots\}=$
\{w | w contains exactly one 1$\}$

- $\Sigma^{*} 1 \Sigma^{*}=\{1,11,01,011,001,110,111, \ldots\}=$
\{w | w contains at least one 1\}
- 01 U $10=\{01,10\}$

FA can recognize any Regular Expression

Theorem: A language is regular if and only if some regular expression describes it

- Prove: If a language is described by a regular expression, then it is regular
- Prove: If a language is regular, then it is described by a regular expression
$\cdot(0 \cup \varepsilon)(1 \cup \varepsilon)=\{01,0,1, \varepsilon\}$

Prove if language described regular expression, it is regular (recognized by FSA)
Each regular expression is either Case 1:

- Case 1: $\mathrm{a} \in \Sigma$
- Case 2: ε
- Case 3: \emptyset
- Case 4: R1 U R2 - Theorem 1.45
- Case 5: R1 • R2 - Theorem 1.47
- Case 6: R1* - Proven on slide 50

Case 2:

Converting from FSA to Regular Expression

