CISC 4090
Theory of Computation

Non-regular languages

Professor Daniel Leeds
dleeds@fordham.edu
JMH 332

Regular languages

Definition: a language is called a regular language if some finite automaton recognizes it

What languages cannot be recognized by an FSA

Regular languages use finite memory (finite states)
Non-regular languages require infinite memory

Are the following regular?

$L_1 = \{w \mid w \text{ has at least 100 1's}\}$
Yes: Start at q_0, For each 1 $q_k \rightarrow q_{k+1}$. $F = \{q_{100}\}$

$L_2 = \{w \mid w \text{ has same number of 0's and 1's}\}$
No: unknown number of states

$L_3 = \{w \mid w \text{ is of the form } 0^n1^n, n>0\}$
No: unknown number of states

What about this class of languages

$\Sigma = \{a, b\}$
$L_n = \{w \mid w \text{ contains } n \text{ b's in a row}\}$
• $L_1 = \{abbba, aabbbba, ababbbba, \ldots\}$
• $L_4 = \{babbbab, bbbb, aaabbbab, \ldots\}$

L_n is regular for each value of n
Regular languages can be infinite
• E.g., a(ba)*b

For FSA to generate an infinite set of strings, there must be a loop between some states

Pumping lemma

Every string in regular language L with length greater than or equal to the pumping length p can be “pumped”

Every string s ∈ L (|s|≥p) can be written as xyz where
1. For each i ≥ 0, xy^iz ∈ L
2. |y| > 0
3. |xy| ≤ p

If L violates pumping lemma, then it is not regular

Proof idea

If |s| ≤ p, trivially true

If |s|>p, consider the states the FSA goes through
• Since there are only p states, |s|>p, one state must be repeated
 • Pigeonhole principle: There must be a cycle
Prove \(B = \{ 0^n1^n \} \) is not regular

Proof by contradiction: assume \(B \) is regular

thus, any \(w \in B \) can be “pumped” if \(|w| > p\)

First suggestion: \(w = 001 \), \(x = 0 \), \(y = 01 \), \(z = 1 \) – counterexample

\[xy^2z = 001011 \notin B \]

Close! But maybe \(|001| \leq p\), how do we know this will be problem when \(|w| > p\)

Our solution: Let \(w = 0^p1^p |w| > p \), so must be “pump”-able

\[|xy| \leq p \text{ so, } x = 0^f \text{ } y = 0^g, \text{ } f + g \leq p \text{ and } g > 0 \]

When we pump \(w \): \(xy^2z \), we get \(p + g \) 0’s followed by \(p \) 1’s. \(xy^2z \notin B \)

Contradiction, pumped \(w \notin B \)

Common pumping proof-by-contradiction

Define a simple word \(w \) that is guaranteed to have more than \(p \) symbols, and you know the first \(p \) symbols

Show repetition of intermediate \(y \) string violates language rules

Prove \(F = \{ \text{ww} \mid w = 0 \cup 1^* \} \) is not regular

Proof by contradiction: assume \(F \) is regular

thus, any \(v \in F \) can be “pumped” if \(|v| > p\)

• Our solution: Let \(w = 0^p1^p |w| > p \) so must be “pump”-able

\[|xy| \leq p \text{ so, } x = 0^f \text{ } y = 0^g, \text{ } f + g \leq p \text{ and } g > 0 \]

When we pump \(w \): \(xy^2z \), we get \(p + g \) 0’s followed by \(10^p1 \). \(xy^2z \notin B \)

Contradiction, pumped \(w \notin F \)

\(F = \{11, 00, 0101, 1010, 11011101, \ldots\} \)

Prove \(E = \{ 1^{n^2} \} \) is not regular

Proof by contradiction: assume \(E \) is regular

thus, any \(w \in E \) can be “pumped” if \(|w| > p\)

Our solution: Let \(w = 1^p \), \(|w| > p \), so must be “pump”-able

\[|xy| \leq p \text{ so } |y| \leq p \]

\[|xy^2z| \leq p^2 + p \]

What’s the length of the next-biggest string after \(|w| = p^2 \)

\[|w^{next\text{-}biggest} | = (p+1)^2 = p^2 + 2p + 1 \]

Pumping \(w \) once gives length at most \(p^2 + p < p^2 + 2p + 1 \)

Thus, \(xy^2z \notin E \)

Contradiction, pumped \(w \notin E \)
Prove $A=\{0^i1^j \mid i>j>0\}$ is not regular

Proof by contradiction: assume A is regular
thus, any $w \in A$ can be "pumped" if $|w|>p$

Our solution:

Let $w=0^{p+1}1^p$ $|w|>p$, so must be "pump"-able
$|xy| \leq p$ so, $x=0^f y=0^g$, $f + g \leq p$ and $g>0$
Let's say $xy=0^p$ So $z=01^p$
When we pump w: xy^2z,
we get $0^p0^f0^g1^p \not\in A$
Let's try pumping down: xy^2z,
we get $xz \not\in A$

Number of 0s: $f+1$ Number of 1s: $p=f+g \geq f+1$
$f+1 \leq p$ number of 0s$<$number of 1 $xy^2z \not\in A$

Contradiction, pumped $w \not\in A$