CISC 4090 Theory of Computation

Non-regular languages

Professor Daniel Leeds dleeds@fordham.edu JMH 332 Regular languages

Definition: a language is called a <u>regular language</u> if some finite automaton recognizes it

What languages cannot be recognized by an FSA

Regular languages use finite memory (finite states) Non-regular languages require infinite memory

Are the following regular?

L1 = {w | w has at least 100 1's} Yes: Start at q_0 , For each 1 $q_k \rightarrow q_{k+1}$. F={ q_{100} }

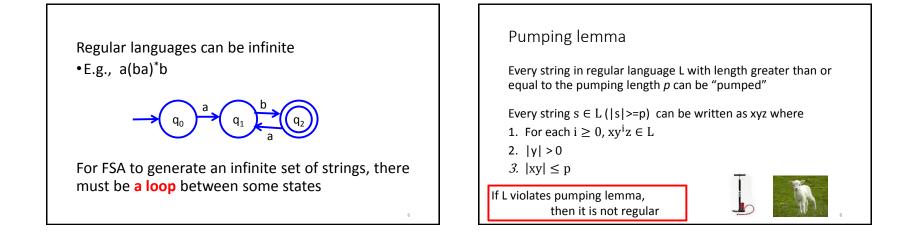
L2 = {w | w has same number of 0's and 1's} No: unknown number of states

L3 = {w | w is of the form 0ⁿ1ⁿ, n>0} No: unknown number of states What about this class of languages

 $\Sigma = \{a, b\}$

- $L_n = \{w \mid w \text{ contains } n \text{ b's in a row } \}$
- $L_3 = \{abbba, aabbba, ababbbba, ...\}$
- $L_4=$ {babbbbab, bbbb, aaabbbbab, ...}

 L_n is regular for each value of n



Pumping lemma, continued

1. For each $i \ge 0$, $xy^i z \in L$

There is a loop

2. |y| > 0

There is a loop of letters (not of ε , which would effectively not be a loop)

3. $|xy| \le p$

Not allowed more states than pumping length (keep memory finite!)

Proof idea

If $|s| \le p$, trivially true

- If |s| > p, consider the states the FSA goes through
- Since there are only p states, |s|>p, one state must be repeated
- Pigeonhole principle: There must be a cycle

	$\{0^n1^n\}$ is not regular iction: assume B is regular thus, any w \in B can b	B={01, 0011, 000111, 00001111,} e "pumped" if w >p
First suggestion:	w=0011, x=0, y=01, z=1 - co xy ² z=001011 \notin B Close! But maybe $ 0011 \le$ be problem when $ w > p$	
Our solution:	Let $w=0^{p}1^{p} w >p$, so must $ xy \le p$ so, $x=0^{f}y=0^{g}$, $f +$ When we pump w: $xy^{2}z$, we get $p+g$ 0's followed by Contradiction, pumped w	$g \le p$ and $g > 0$ p 1s. $xy^2z \notin B$

Common pumping proof-by-contradiction

Define a simple word w that is guaranteed to have more than p symbols, and you know the first p symbols

Show repetition of intermediate y string violates language rules

Prove F={ww | w=(0 U 1)* } is not regular Proof by contradiction: assume F is regular thus, any v \in F can be "pumped" if |v|>p • Our solution: Let w=0^p10^p1 |w|>p so must be "pump"-able |xy| \leq p so, x=0^f y=0^g, f + g \leq p and g>0 When we pump w: xy²z, we get p+g 0's followed by 10^p1 . xy²z \notin B **Contradiction, pumped w** \notin F F={11, 00, 0101, 1010, 11011101, ...}

15

Prove E= $\{1^{n^2}\}$ is not regular		
Proof by contradiction: assume E is regular thus, any $w \in E$ can be "pumped" if $ w >p$		
Our solution: Let $\mathbf{w} = 1^{p^2}$ $ w > p$, so must be "pump"-able $ xy \le p$ so $ y \le p$ $ xy^2z \le p^2 + p$ What's the length of the next-biggest string after $ w = p^2$ $ w^{next-biggest} = (p+1)^2 = p^2+2p+1$		
Pumping w onc Thus, xy²z ∉ E	e gives length at most p ² +p < p ² +2p+1	
Contradiction,	pumped w ∉ E	

Prove A={	D ⁱ 1 ^j i>j>0} is not regular
Proof by contra	diction: assume A is regular thus, any $w \in A$ can be "pumped" if $ w >p$
Our solution:	Let $w=0^{p+1}1^p$ $ w >p$, so must be "pump"-able $ xy \le p$ so, $x=0^f y=0^g$, $f+g \le p$ and $g>0$ Let's say $xy = 0^p$ So $z=01^p$ When we pump $w: xy^2z$, we get $0^{f}0^{g}0^{g}0^{1p} \rightarrow 0^{p+g+1}1^p \in A$ Let's try pumping down : $xy^{0}z$, we get $xz \rightarrow 0^{f}01^p$ Number of 0s: $f+1$ Number of 1s: $p=f+g\ge f+1$ $f+1\le p$ number of 0s <number 1="" <math="" of="">xy^{0}z\notin A Contradiction, pumped w $\notin A$</number>