CISC 4090
Theory of Computation
Context-Free Languages and
Push Down Automata
Professor Daniel Leeds
dleeds@fordham.edu
JMH 332

Languages: Regular and Beyond
Regular:
• Captured by Regular Operations \((a \cup b) \cdot c^* \cdot (d \cup e) \)
• Recognized by Finite State Machines
Context Free Grammars:
• Human language
• Parsing of computer language

An example Context-Free Grammar
Grammar G1
\[
\begin{align*}
A & \rightarrow 0A1 \\
A & \rightarrow B \\
B & \rightarrow \#
\end{align*}
\]
Example strings generated:
\#, 0#1, 00#11, 000#111, ...
\[L(G1) = \{0^n#1^n \mid n \geq 0\}\]
Variables: A, B; Terminals: 0, 1, #
One start variable: A
Substitution rules/productions
• Variable -> Variables, Terminals

Example English Grammar
Sentence -> NounPhrase VerbPhrase
NounPhrase -> Article NounSub
NounSub -> Noun | Adjective NounSub
VerbPhrase -> Verb | Verb NounPhrase
Noun -> Girl | Boy | Duck | Ball
Article -> The | A
Verb -> Throws | Sings

Example 1:
\[
\begin{align*}
S & \rightarrow NP \ VP \\
& \rightarrow A \ NS \ V \\
& \rightarrow A \ N \ V \\
& \rightarrow \text{The Boy Sings}
\end{align*}
\]

Example 2:
\[
\begin{align*}
S & \rightarrow NP \ VP \\
& \rightarrow A \ NS \ V \\
& \rightarrow A \ N \ V \\
& \rightarrow A \text{Duck Throws}
\end{align*}
\]
Formal CFG Definition

A CFG is a 4-tuple \((V, \Sigma, R, S)\)

- \(V\) is a finite set of variables
- \(\Sigma\) is a finite set of terminals
- \(R\) is a finite set of rules
- \(S \in V\) is the start variable

Example rule expansion:

\[
S \to aSb \\
S \to SS
\]

Example strings generated:

\[
\varepsilon, ab, abab, aabb, aaabbbab, \quad \text{abababab, abaaabbb, ...}
\]

\(L(G3) = \{ \text{a's & b's; each a is followed by a matching b, every b matches exactly one corresponding preceding a} \}
\]

(like parenthesis matching)

Another example

\[G3 = (\{S\}, \{a, b\}, R, S)\]

\[R: \quad S \to aSb \mid SS \mid \varepsilon\]

Example strings generated:

\[
\varepsilon, \quad \{\}
\]

YetAnother example

\[G3 = (\{S\}, \{a, b\}, R, S)\]

\[R: \quad S \to aSb \mid SS \mid \varepsilon\]

Example strings generated:

\[
L(G1) = \{ \}
\]

Another example

\[G4 = (\{A, B, C\}, \{a, b, c\}, R, A)\]

\[R: \quad A \to aA \mid BC \mid \varepsilon\]

\[B \to Bb \mid C\]

\[C \to c \mid \varepsilon\]

Example strings generated:

\[
\varepsilon, a, \text{aaa, cbhc, aacc}
\]

\[L(G4) = \{ \text{Hard to describe...} \}
\]
Designing CFGs
Creativity required

• If CFL is union of simpler CFL, design grammar for simpler ones \((G_1, G_2, G_3)\), then combine: \(S \rightarrow G_1 \mid G_2 \mid G_3\)

• If language is regular, can make CFG mimic DFA

Example: express as CFG

\[
\begin{align*}
Q_0 &\rightarrow 1Q_1 \\
Q_1 &\rightarrow 0Q_1 \mid 1Q_2 \\
Q_2 &\rightarrow \varepsilon
\end{align*}
\]

Designing CFGs
Creativity required

• If language is regular, can make CFG mimic DFA
 Match each state with a single corresponding variable
 \(Q = \{q_0, \ldots, q_n\}\)
 \(V = \{R_0, \ldots, R_n\}\)
 Start state \(q_0\) corresponds to state variable \(S \rightarrow R_0\)
 Replace transition function with Production rule
 \(\delta(q_i, a) = q_j\) \(R_i \rightarrow aR_j\)
 Accept state \(q_k\) : transition to \(\varepsilon\) \(R_k \rightarrow \varepsilon\)

Chomsky Normal Form

CFG is in Chomsky normal form if every rule takes form:

- \(A \rightarrow BC\)
- \(A \rightarrow a\)

• \(B\) and \(C\) may not be the start variables
• The start variable may transition to \(\varepsilon\)

Any CFL can be generated by CFG in Chomsky Normal Form
Converting to Chomsky Normal Form

- $S_0 \to S$ where S was original start variable
- Remove $A \to \epsilon$
- Shortcut all unit rules
 - Given $A \to B$ and $B \to u$, add $A \to u$
- Replace variable-terminal rules with variable-variable rules
 - Given $A \to BC$, add $U_c \to c$ and change A to $A \to BU_c$
- Replace rules $A \to u_1u_2u_3 \ldots u_k$ with:
 - $A \to u_1A_1, A_1 \to u_2A_2, A_2 \to u_3A_3, \ldots, A_{k-2} \to u_{k-1}u_k$

Conversion practice

Non-normal form:

<table>
<thead>
<tr>
<th>Production</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S \to aSa</td>
<td>bX</td>
</tr>
<tr>
<td>$X \to Ycc\epsilon$</td>
<td>$Y \to d</td>
</tr>
</tbody>
</table>

Conversion practice

Step 1: $S_0 \to S$
- $S \to aSa|bX|b$
- $X \to Ycc$
- $Y \to d|c$

Step 2: Remove ϵ,
- $S_0 \to S$
- $S \to aSa|bX|b$
- $X \to Ycc$
- $Y \to d|c$

Step 3: Use unit rules,
- $S_0 \to aSa|bX|b$
- $X \to Ycc$
- $Y \to d|c$

Step 4: Replace terminals,
- $S_0 \to AN|BX|b$
- $S \to AN|BX|b$
- $X \to YM$
- $Y \to d|c$
- $A \to a$
- $B \to b$
- $C \to c$
- $N \to SA$
- $M \to CC$

Step 5: Reduce multi-variable
- $S_0 \to AN|BX|b$
- $S \to AN|BX|b$
- $X \to YM$
- $Y \to d|c$
- $A \to a$
- $B \to b$
- $C \to c$
- $N \to SA$
- $M \to CC$

Ambiguity – examples

A grammar may generate a string in multiple ways

Math example:
- $\text{Expr} \to \text{Expr} + \text{Expr} | \text{Expr} \times \text{Expr} | \text{Expr} | a$

English example:
- *the girl touches the boy with the flower*
Ambiguity – definitions

A grammar generates a string ambiguously if there are two or more different parse trees.

Definitions:
• Leftmost derivation: at each step the leftmost remaining variable is replaced.
• w is derived ambiguously in CFG G if there exist more than one leftmost derivations.

Conversion practice

Step 1: Replace unit rules
Non-normal form:

- $S \rightarrow AA|BXC$
- $X \rightarrow Xc|Y\delta|a$
- $Y \rightarrow Ycc|a$
- $A \rightarrow a$
- $B \rightarrow b$
- $C \rightarrow c$

Step 2: Replace terminals

- $S \rightarrow aa|bXc$
- $X \rightarrow Xc|YC\delta|a$
- $Y \rightarrow Ycc|a$
- $A \rightarrow a$
- $B \rightarrow b$
- $C \rightarrow c$

Step 3: Reduce multi-var

- $S \rightarrow AA|BN$
- $X \rightarrow Xc|YM\delta|a$
- $Y \rightarrow YM|a$
- $A \rightarrow a$
- $B \rightarrow b$
- $C \rightarrow c$
- $N \rightarrow XC$
- $M \rightarrow CC$

Push down automata

- FSA augmented with memory
- Equivalent to CFG if use non-determinism

Finite control: transition function
- Tape: holds input string
- Stack: Can write to/read from stack
- Input is Last In First Out (“LIFO”)
PDA and Language 0^n1^n
Read symbol from input, push each 0 onto stack
As soon as see 1’s, start popping 0 for each 1 seen
• If finish reading and stack empty, accept
• If stack is empty and 1’s remain, reject
• If inputs finished but stack still has 0’s, reject
• In 0 appears on input, reject

Definition of PDA
A PDA is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where Q, Σ, Γ, and F are finite sets
• Q is sets of states
• Σ is the input alphabet
• Γ is the stack alphabet
• $\delta: Q \times \Sigma \times \Gamma \varepsilon \rightarrow P(Q \times \Gamma \varepsilon)$ is transition function
• $q_0 \in Q$ is start state
• $F \subseteq Q$ is set of accept states

PDA computation
M must start in q_0 with empty stack
M must move according to transition function
To accept string, M must be at accept state at end of input
Start stack with $. If you see $ at top of stack, it is empty

Understanding transition δ
$a, b \rightarrow c$ means:
• when you read a from tape and b is on top of stack
• replace b with c on top of stack
• a, b, c can be ε
• If a is ε then change stack without reading a symbol
• If b is ε then push new symbol c without popping b
• If c is ε then no new symbol pushed, only pop b
PDA to accept 0^n1^n

M1 is $(Q, \Sigma, \Gamma, \delta, q_0, F)$
- $Q = \{q_1, q_2, q_3, q_4\}$ $\Sigma = \{0, 1\}$
- $\Gamma = \{0, \$\}$ $F = \{q_1, q_4\}$

$0, \varepsilon \rightarrow 0$ $1, 0 \rightarrow \varepsilon$

PDA to accept 0^n1^n

Input: 0011

PDA to accept $\{ww^R\}$

Power of non-determinism:
- At start, don’t know where string w ends

$0, \varepsilon \rightarrow 0$ $0, 0 \rightarrow \varepsilon$

PDA to accept $a^ib^jc^k$, $i=j$ or $j=k$

Power of non-determinism:
- At start, don’t know if $i=j$ or $j=k$
Theorem: A language is context free if and only if some PDA recognizes it

Let's prove: If a language L is CFL, some PDA recognizes it

Idea: Show how CFG can define a PDA

- Stack has set of terminals/variables to compare with input
- Place proper terminal/variable pattern onto stack based on rules
- Non-determinism: Clone your machine, following different branches of rules

CFG -> PDA

- If top of stack is variable, sub one right-hand rule for the variable
- If top of stack is terminal, keep going iff terminal matches input
- If top of stack is $, accept!

Example 2.25 in textbook

Regular languages vs. CFLs

- CFGs define CFLs
- PDAs recognize CFLs and Regular languages
- FSAs recognize Regular languages, but not CFLs
- CFLs and Regular languages not equivalent
Non Context Free Languages

Languages recognized by PDAs
• \(L = \{ ww^R \} \)
• \(L = \{ a^n b^n \mid n \geq 0 \} \)

Languages not recognized by PDAs
• \(L = \{ ww \} \)
• \(L = \{ a^n b^n c^n \mid n \geq 0 \} \)

Proving non context free – NEW pumping lemma!

Every string in CFL \(A \) with length greater than or equal to the pumping length \(p \) can be “pumped”

Every string \(w \in A \ (|w| \geq p) \) can be written as \(uvxyz \) where
1. For each \(i \geq 0 \), \(uv^i xy^i z \in A \)
2. \(|vy| > 0 \)
3. \(|vxy| \leq p \)

Regular language PUMPING: Proof idea

If \(|s| < p \), trivially true
If \(|s| \geq p \), consider the states the FSA goes through
• Since there are only \(p \) states, \(|s| > p \), one state must be repeated
• Pigeonhole principle: There must be a cycle

CFL pumping: Proof idea

Pigeonhole idea: Given a long enough string, some variable will need to be repeated

Example Grammar: \(S \rightarrow uRz \)
\(R \rightarrow x \mid vRy \)
Prove $F = \{ww \mid w = (0 \cup 1)^*\}$ not CFL

Try a sample string $s = \{0^p10^p1\} \ |s| > p$

• Can we define $uvxyz = s$ so $uv^ixy^iz \in F$?
• Yes: $u = 0^{p-1}$, $v = 0$, $x = 1$, $y = 0$, $z = 0^{p-1}1$

Try another sample string $s = \{0^p10^p1^p\}$

• Can we define $uvxyz = s$ so $uv^ixy^iz \in F$?
• No:
 • If vxy is in first w, pumping will make increase 1’s and/or 0’s in first w but not in second
 • If vxy straddles the middle, vxy will either increase 1’s for first w and 0’s for second w, or will break the 0^n1^n pattern