
10/1/2017

1

CISC 4090
Theory of Computation

Context-Free Languages and
Push Down Automata

Professor Daniel Leeds

dleeds@fordham.edu

JMH 332

Languages: Regular and Beyond

Regular:

•Captured by Regular Operations a ∪ b ∙ c∗ ∙ d ∪ e

•Recognized by Finite State Machines

Context Free Grammars:

•Human language

•Parsing of computer language

2

An example Context-Free Grammar

Grammar G1

A → 0A1

A → B

B → #

Variables: A, B; Terminals: 0, 1, #

One start variable: A

Substitution rules/productions

• Variable -> Variables, Terminals 3

Example strings generated:
#, 0#1, 00#11, 000#111, …

L(G1) = {0n#1n | n≥0}

Example English Grammar

Sentence -> NounPhrase VerbPhrase

NounPhrase -> Article NounSub

NounSub -> Noun | Adjective NounSub

VerbPhrase -> Verb | Verb NounPhrase

Noun -> Girl | Boy | Duck | Ball

Article -> The | A

Verb -> Throws | Sings

4

Example 1:
S -> NP VP

-> A NS V
-> A N V
-> The Boy Sings

Example 2:
S -> NP VP

-> A NS V
-> A N V
-> A Duck Throws

10/1/2017

2

Formal CFG Definition

A CFG is a 4-tuple V, Σ, R, S

•V is finite set of variables

•Σ finite set of terminals

•R finite set of rules

• S ∈ V start variable

5

YetaAnother example

G3 = S , a, b , R, S

R: S → aSb SS ε

6

Example strings generated:

L(G1) = { }

Another example

G3 = S , a, b , R, S

R: S → aSb SS ε

7

Example strings generated:
ε, ab, abab, aabb, aaabbbab,
ababababab, abaaabbb, …

L(G3) = {a’s & b’s; each a is followed by a matching b, every
b matches exactly one corresponding preceding a}
(like parenthesis matching)

Example rule expansion:

S -> aSb S -> SS
aaSbb aSb aSb
aaεbb aεb aaSbb
aabb aεb aaεbb

abaabb

Another example

G4 = A, B, C , a, b, c , R, A

R: A → aA BC ε

B → Bb | C

C → c | ε

8

Example strings generated:

10/1/2017

3

Designing CFGs
Creativity required

• If CFL is union of simpler CFL, design grammar for simpler
ones (G1, G2, G3), then combine: S -> G1 | G2 | G3

• If language is regular, can make CFG mimic DFA

10

Example: express as CFG

11

q0 q1

1

0

q2

1

Example: express as CFG

12

q0 q1

1

0

q2

1

Q0 -> 1Q1

Q1 -> 0Q1 | 1Q2

Q2 -> 휀

Designing CFGs
Creativity required

• If language is regular, can make CFG mimic DFA

Match each state with a single corresponding variable

Q={q0,…,qn} V={R0, …, Rn}

Start state q0 corresponds to state variable S -> R0

Replace transition function with Production rule

𝛿 𝑞𝑖 , 𝑎 = 𝑞𝑗 𝑅𝑖 → 𝑎𝑅𝑗

Accept state qk : transition to 휀 𝑅𝑘 → 휀

13

10/1/2017

4

Push down automata

FSA augmented with memory

Equivalent to CFG if use non-determinism

Finite control: transition function

Tape: holds input string

Stack: Can write to/read from stack

Input is Last In First Out (“LIFO”)

14

PDA and Language 0n1n

Read symbol from input, push each 0 onto stack

As soon as see 1’s, start popping 0 for each 1 seen

• If finish reading and stack empty, accept

• If stack is empty and 1’s remain, reject

• If inputs finished but stack still has 0’s, reject

• In 0 appears on input, reject

15

Definition of PDA

A PDA is a 6-tuple Q, Σ, Γ, δ, q0, F where Q, Σ, Γ, and F
are finite sets

• Q is sets of states

• Σ is the input alphabet

• Γ is the stack alphabet

• δ: Q × Σε × Γε → P Q × Γε is transition function

• q0 ∈ Q is start state

• F ⊆ Q is set of accept states

16

PDA computation

M must start in q0 with empty stack

M must move according to transition function

To accept string, M must be at accept state at end of input

Start stack with $. If you see $ at top of stack, it is empty

17

10/1/2017

5

Understanding transition 𝛿

𝑎, 𝑏 → 𝑐 means:

• when you read a from tape and b is on top of stack

• replace b with c on top of stack

a, b, or c can be 휀

• If a is 휀 then change stack without reading a symbol

• If b is 휀 then push new symbol c without popping b

• If c is 휀 then no new symbol pushed, only pop b

18

PDA to accept 0n1n

M1 is Q, Σ, Γ, δ, q0, F

• 𝑄 = 𝑞1, 𝑞2, 𝑞3, 𝑞4 Σ = 0,1

• Γ = 0, $ F = q1, q4

19

q1 q2 q3

0, 휀 → 0

휀, 휀 → $
q4

1,0 → 휀

1,0 → 휀

휀, $ → 휀

PDA to accept 0n1n

20

q1 q2 q3

0, 휀 → 0

휀, 휀 → $
q4

1,0 → 휀

1,0 → 휀

휀, $ → 휀

$ $
0

$
0
0

$
0

$

Input: 0011

PDA to accept {wwR}

21

Power of non-determinism:

• At start, don’t know where string w ends

q1 q2 q3

0, 휀 → 0
1, 휀 → 1

휀, 휀 → $
q4

휀, 휀 → 휀

0,0 → 휀
1,1 → 휀

휀, $ → 휀

10/1/2017

6

PDA to accept aibjck, i=j or j=k Theorem: A language is context free if and
only if some PDA recognizes it

Let’s prove: If a language L is CFL, some PDA recognizes it

Idea: Show how CFG can define a PDA

• Stack has set of terminals/variables to compare with input

• Place proper terminal/variable pattern onto stack based on
rules

• Non-determinism: Clone your machine, following different
branches of rules

24

CFG -> PDA

• If top of stack is variable, sub one right-hand rule for the variable

• If top of stack is terminal, keep going iff terminal matches input

• If top of stack is $, accept!

25

Example 2.25 in textbook

26

S -> aTb | b
T -> Ta | ε

q1

휀, 휀 → $

loop

휀, 휀 → 𝑆

휀, 𝑆 → 𝑏 휀, 휀 → 𝑇 휀, 휀 → 𝑎

휀, 𝑇 → 𝑎 휀, 휀 → 𝑇

휀, 𝑆 → 𝑏
휀, 𝑇 → 휀
𝑎, 𝑎 → 휀
𝑏, 𝑏 → 휀

fin

휀, $ → 휀

10/1/2017

7

Chomsky Normal Form

CFG is in Chomsky normal form if every rule takes form:

A → BC

A → a

•B and C may not be the start variables

• The start variable may transition to 휀

Any CFL can be generated by CFG in Chomsky Normal Form

27

Converting to Chomsky Normal Form

• 𝑆0 → 𝑆 where S was original start variable

• Remove 𝐴 → 휀

• Shortcut all unit rules

Given 𝐴 → 𝐵 and 𝐵 → 𝑢 , add 𝐴 → 𝑢

• Replace variable-terminal rules with variable-variable rules

Given 𝐴 → 𝐵c, add 𝑈𝐶 → 𝑐 and change A to 𝐴 → 𝐵𝑈𝐶

• Replace rules 𝐴 → 𝑢1𝑢2𝑢3…𝑢𝑘 with:

𝐴 → 𝑢1𝐴1, 𝐴1 → 𝑢2𝐴2, 𝐴2 → 𝑢3𝐴3, …, 𝐴𝑘−2 → 𝑢𝑘−1𝑢𝑘 29

Conversion practice

Non-normal form:

𝑆 → 𝑎𝑆𝑎|𝑏𝑋

𝑋 → 𝑌𝑐𝑐|휀

𝑌 → 𝑑|𝑐

30

Ambiguity – examples

A grammar may generate a string in multiple ways

Math example:

Expr → Expr + Expr Expr × Expr Expr | a

English example:

the girl touches the boy with the flower

33

10/1/2017

8

Ambiguity – definitions

A grammar generates a string ambiguously if there are two or
more different parse trees

Definitions:

• Leftmost derivation: at each step the leftmost remaining variable
is replaced

• w is derived ambiguously in CFG G if there exist more than one
leftmost derivations

34

Conversion practice

Non-normal form:

𝑆 → 𝑎𝑎|𝑏𝑋𝑐

𝑋 → 𝑋𝑐|𝑌

𝑌 → 𝑌𝑐𝑐|𝑎

35

Regular languages vs. CFLs

•CFGs define CFLs

•PDAs recognize CFLs and Regular languages

• FSAs recognize Regular languages, but not CFLs

•CFLs and Regular languages not equivalent

38

Non Context Free Languages

Languages recognized by PDAs

• L={wwR}

• L={anbn | n≥0}

Languages not recognized by PDAs

• L={ww}

• L={anbncn | n≥0}

39

10/1/2017

9

Proving non context free – NEW pumping lemma!

Every string in CFL A with length greater than or equal to the
pumping length p can be “pumped”

Every string w ∈ A (|w|≥p) can be written as uvxyz where

1. For each i ≥ 0, uvixyiz ∈ A

2. |vy| > 0

3. vxy ≤ p

40

Regular language PUMPING: Proof idea

If s < p, trivially true

If |s| ≥ p, consider the states the FSA goes through

• Since there are only p states, |s|>p, one state must be
repeated

• Pigeonhole principle: There must be a cycle

41

CFL pumping: Proof idea

Pigeonhole idea: Given a long enough string,
some variable will need to be repeated

Example Grammar: S -> uRz

R -> x | vRy

42

T

R

R

u v x y z

Prove F={ww | w= 0 ∪ 1 ∗} not CFL

Try a sample string s={0p10p1} |s|>p

• Can we define uvxyz=s so uvixyiz∈F ?

• Yes: u=0p-1 , v=0, x=1, y=0, z=0p-11

Try another sample string s={0p1p0p1p}

• Can we define uvxyz=s so uvixyiz∈F ?

• No:
• If vxy is in first w, pumping will make increase 1’s and/or 0’s in first w

but not in second

• If vxy straddles the middle, vxy will either increase 1’s for first w and 0’s
for second w, or will break the 0n1n pattern 43

10/1/2017

10

Prove B={anbncn | n≥0} not CFL

44

