CISC 4090 Theory of Computation Context-Free Languages and

Professor Daniel Leeds dleeds@fordham.edu JMH 332

Push Down Automata

Regular:

- Captured by Regular Operations $(a \cup b) \cdot c^* \cdot (d \cup e)$
- Recognized by Finite State Machines

Context Free Grammars:

- Human language
- Parsing of computer language

An example Conte	xt-Free Grammar
Grammar G1 $A \rightarrow 0A1$ $A \rightarrow B$ $B \rightarrow #$	Example strings generated: #, 0#1, 00#11, 000#111, L(G1) = {0 ⁿ #1 ⁿ n≥0}
Variables: A, B; Termina	ıls: 0, 1, #
One start variable: A	
 Substitution rules/produ Variable -> Variables, Te 	ctions erminals

Example English Grammar	Example 1: S -> NP VP -> A NS V
Sentence -> NounPhrase VerbPhrase	-> A N V
NounPhrase -> Article NounSub	-> The Boy Sings
NounSub -> Noun Adjective NounSub	
VerbPhrase -> Verb Verb NounPhrase	Example 2:
Noun -> Girl Boy Duck Ball	S -> NP VP
Article -> The A	-> A NS V
Verb -> Throws Sings	-> A N V
	-> A Duck Throws
	4

YetaAnother example		
$G3 = ({S}, {a, b}, R, S)$ R: S \rightarrow aSb SS ε		
Example strings generated:		
L(G1) = {	}	6

	Example rule	expansion:
Another example	S -> aSb	S -> SS
	aaSbb	aSb aSb
$G3 = ({S}, {a, b}, R, S)$	aaɛbb	aɛb aaSbb
$B^{\circ} = S \rightarrow aSh SS \varepsilon$	aabb	aɛb aaɛbb
		abaabb
Example strings generated:		
ε , ab, abab, aabb, aaabbbab,		
ababababab, abaaabbb,		
L(G3) = {a's & b's; each a is follo	wed by a matching	ng b, every
b matches exactly one correspo	onding preceding	a}
(like parenthesis matching)		7

Another example $G4 = (\{A, B, C\}, \{a, b, c\}, R, A)$ $R: A \rightarrow aA \mid BC \mid \varepsilon$ $B \rightarrow Bb \mid C$ $C \rightarrow c \mid \varepsilon$ Example strings generated:

Designing CFGs

Creativity required

- If CFL is union of simpler CFL, design grammar for simpler ones (G1, G2, G3), then combine: S -> G1 | G2 | G3
- If language is regular, can make CFG mimic DFA

PDA and Language Oⁿ1ⁿ Read symbol from input, push each 0 onto stack As soon as see 1's, start popping 0 for each 1 seen If finish reading and stack empty, accept If stack is empty and 1's remain, reject If inputs finished but stack still has 0's, reject In 0 appears on input, reject

Definition of PDA

- A PDA is a 6-tuple $(Q,\Sigma,\Gamma,\delta,q_0,F)$ where Q, $\Sigma,\Gamma,$ and F are finite sets
- Q is sets of states
- $\boldsymbol{\Sigma}$ is the input alphabet
- Γ is the stack alphabet
- $\delta {:}~Q \times \Sigma \epsilon \times \Gamma \epsilon \to P(Q \times \Gamma \epsilon)$ is transition function
- $q_0 \in Q$ is start state
- $F \subseteq Q$ is set of accept states

PDA computation

M must start in q_0 with empty stack M must move according to transition function To accept string, M must be at accept state at end of input

Start stack with \$. If you see \$ at top of stack, it is empty

 $a, b \rightarrow c$ means:

• when you read a from tape and b is on top of stack

• replace b with c on top of stack

a, b, or c can be ε

 \bullet If a is ε then change stack without reading a symbol

18

• If b is ε then push new symbol c without popping b

• If c is ε then no new symbol pushed, only pop b

24

PDA to accept aⁱb^jc^k, i=j or j=k

Theorem: A language is context free if and only if some PDA recognizes it Let's prove: If a language L is CFL, some PDA recognizes it Idea: Show how CFG can define a PDA

- Stack has set of terminals/variables to compare with input
- Place proper terminal/variable pattern onto stack based on rules
- Non-determinism: Clone your machine, following different branches of rules

CFG -> PDA

- If top of stack is variable, sub one right-hand rule for the variable
- If top of stack is terminal, keep going iff terminal matches input
- If top of stack is \$, accept!

Chomsky Normal Form

CFG is in Chomsky normal form if every rule takes form:

 $A \rightarrow BC$

 $A \rightarrow a$

• B and C may not be the start variables

• The start variable may transition to arepsilon

Any CFL can be generated by CFG in Chomsky Normal Form

Converting to Chomsky Normal Form

- $S_0 \rightarrow S$ where S was original start variable
- Remove $A \rightarrow \varepsilon$
- Shortcut all unit rules $\label{eq:Given} \operatorname{Given} A \to B \text{ and } B \to u \text{ , add } A \to u$
- Replace variable-terminal rules with variable-variable rules Given $A \to Bc$, add $U_C \to c$ and change A to $A \to BU_C$
- Replace rules $A \rightarrow u_1 u_2 u_3 \dots u_k$ with: $A \rightarrow u_1 A_1, A_1 \rightarrow u_2 A_2, A_2 \rightarrow u_3 A_3, \dots, A_{k-2} \rightarrow u_{k-1} u_k$

Ambiguity – definitions

A grammar generates a string ambiguously if there are two or more different parse trees

Definitions:

- <u>Leftmost derivation</u>: at each step the leftmost remaining variable is replaced
- *w* is derived **ambiguously** in CFG G if there exist more than one leftmost derivations

34

Conversion practice	
Non-normal form: $S \rightarrow aa bXc$ $X \rightarrow Xc Y$ $Y \rightarrow Ycc a$	

Regular languages vs. CFLs

- CFGs define CFLs
- PDAs recognize CFLs and Regular languages
- FSAs recognize Regular languages, but not CFLs
- CFLs and Regular languages not equivalent

	Prove F={ww w= $(0 \cup 1)^*$ } not CFL
т	ry a sample string s={0 ^p 10 ^p 1} s >p
•	Can we define $uxxyz=s$ so $uy^ixy^iz\in F$?
•	Yes: u=0 ^{p-1} , v=0, x=1, y=0, z=0 ^{p-1} 1
т	rv another sample string s={0 ^p 1 ^p 0 ^p 1 ^p }
•	Can we define $uxxyz=s$ so $ux^ixy^iz\in F$?
•	No:
	 If vxy is in first w, pumping will make increase 1's and/or 0's in first w but not in second
	 If vxy straddles the middle, vxy will either increase 1's for first w and 0' for second w, or will break the 0ⁿ1ⁿ pattern

Prove B={aⁿbⁿcⁿ | n≥0} not CFL