CISC 4090 Theory of Computation

Turing Machines, continued: Transducers, MultiTape, NonDeterminism

> Professor Daniel Leeds dleeds@fordham.edu JMH 332

Language D={aⁱb^jc^k | k=ixj and i,j,k>0} Multiplication on a Turing Machine! Consider 2x3=6

TM M3 to decide $D=\{a^ib^jc^k | k=ixj and i, j, k>0\}$

Scan string to confirm form is a⁺b⁺c⁺ • if so: go back to front; if not: reject X out first a, for each b, x off that b and x off one c • If run out of c's but b's left: reject Restore crossed out b's, repeat b—c loop for next a • If all a's gone, check if any c's left • If c's left: reject; if no c's left: accept

Transducers: generating language

So far our machines accept/reject input

Transduction: Computers transform from input to output • New TM: given *i* a's and *j* b's on tape, print out *ixj* c's Transducer: Write c^k , k=ixj, given i a's, j b's,

Scan string to confirm form is a⁺b⁺

• if so: go back to front; if not: reject

X out first a, for each b, Y off that b and add c to the end $% \left({{\mathbf{x}}_{i}}\right) =\left({{\mathbf{x}}_{i}}\right) \left({{\mathbf{x}}_{i}}\right)$

Restore crossed out b's, repeat b—c loop for next a • If all a's gone, accept

TM 4: Element distinctivenessTM 4 solutionGiven a list of strings over {0,1}, separated by #, accept if all
strings are different:1. Place mark on top of left-most symbol. If it is blank: accept;
if it is #: continue, otherwise: rejectExample: 01101#1011#000102. Scan right to next # and place mark on it. If none
encountered and reach blank: accept3. Zig-zag to compare strings to right of each marked #
4. Move right-most marked # to the right. If no more #: move
left-most # to its right and the right-most # to the right of the
new first marked #. If no # available for second marked #:
accepts5. Go to step 3s

Decidability

How do we know decidable?

- Simplify problem at each step toward goal
- Can prove formally number of remaining symbols at each step

Showing language is Turing recognizable but not decidable is harder

- Many equivalent variants of TM
- TM that can "stay put" on tape for a given transition
- TM with multiple tapes
- TM with non-deterministic transitions

Can select convenient alternative for current problem

MultiTape TM

- Each tape has own ReadWrite Head
- Initially tape 1 has input string, all other tapes blank
- Transition does read/write on all heads at once

An Algorithm

is a collection of simple instructions for carrying out some task

Hilbert's Problems

In 1900, David Hilbert proposed 23 mathematical problems

Problem #10

- Devise algorithm to determine if a polynomial has an integral root.
- Example: $6x^3yz^2+3xy^2-x^3-10$ has root x=5, y=3, z=0 General algorithm for Problem 10 does not exist!

Church-Turing Thesis

- Intuition of thesis: algorithm == corresponding Turing machine
- Algorithm described by TM also can be describe by $\lambda-\mbox{calculus}$ (devised by Alonzo Church)

Hilbert's 10th problem

Is language D decidable, where $D=\{p \mid p \text{ is polynomial with integral root}\}$

Devise procedure:

- Try all ints, starting at 0: x=0, 1, -1, 2, -2, 3, -3, ...
- You may never terminate so not decidable

Exception: univariate case for root is decidable

Levels of description

For FA and PDA

• Formal or informal description of machine operation

For TM

- Formal or informal description of machine operation
- OR just describe algorithm
 - Assume TM confirms input follows proper tape string format

Graph connectivity problem

Let A be all strings representing graphs that are connected (any node can be reached by any other)

- A={<G> | G is connected undirected graph}
- Describe TM M to decide language

Algorithm:

- 1. Select and mark first node of G
- 2. Repeat below until no new nodes marked:
 - For each node in G, mark if it is attached to already-marked node
- 3. Scan all nodes of G if all marked, accept; else, reject