CISC 4090

Theory of Computation
Turing Machines, continued: Transducers, MultiTape, NonDeterminism

Professor Daniel Leeds
dleeds@fordham.edu
JMH 332

"Turing recognizable" vs. "Decidable"

$L(M)$ - "language recognized by M " is set of strings M accepts
Language is Turing recognizable if some Turing machine recognizes it

- Also called "recursively enumerable"

Machine that halts on all inputs is a decider. A decider that recognizes language L is said to decide language L

Language is Turing decidable, or just decidable, if some Turing machine decides it

Example non-halting machine

Determining if a machine halts can be hard!

Turing machine structure Infinite tape

At each step

- Must move left/right on tape
- Can change state
- Can change tape content

When reaches accept or reject state,

terminates and outputs "accept" or "reject"
Can loop forever

Turing Machine for $\mathrm{C}=\left\{0^{2^{n}} \mid n \geq 0\right\}$

Recursive division by 2

Sweep left to right across tape, cross off every-other 0
If

- Exactly one 0: accept
- Odd number of 0 s : reject
- Even number of 0 s , return to front

(Incomplete)

State machine for alternating 0 removal

Language $D=\left\{a^{i} b^{i} c^{k} \mid k=i x j\right.$ and $\left.i, j, k>0\right\}$
Multiplication on a Turing Machine!
Consider 2x3=6

$$
\sim \sim \sim \text { a a b bbccccc c } \sim \sim \sim
$$

TM M3 to decide $D=\left\{a^{i} b^{j} c^{k} \mid k=i x j\right.$ and $\left.i, j, k>0\right\}$

Scan string to confirm form is $\mathrm{a}^{+} \mathrm{b}^{+} \mathrm{c}^{+}$

- if so: go back to front; if not: reject
X out first a, for each b, x off that b and x off one c
- If run out of c's but b's left: reject

Restore crossed out b's, repeat b-c loop for next a

- If all a's gone, check if any c's left
- If c's left: reject; if no c's left: accept

"Multiply" in action:		$\sim \sim a \operatorname{abbbcccccc} \sim \sim$ $\sim \sim a b b b c c c c c$ \sim \cdots $\sim \sim$ \sim
TM M3 "decides" language D		$\sim \sim a \mathrm{abbbccccc} \sim \sim$ $\sim \sim X a b b b c c c c c \sim \sim$
Symbol X is an a or c that is gone for good	$\stackrel{0}{0}$.	$\stackrel{.}{\sim} \sim$ Xaybbccccoc~~ ~~XaybbXcccc~~
Symbol y is a b temporarily out of service as you go through all the other b's		~~Xayybxcccco~~

Transducers: generating language

So far our machines accept/reject input
Transduction: Computers transform from input to output

- New TM: given i a's and j b's on tape, print out ixj c's

Transducer: Write ck , k=ixj, given i a's, j b's,
Scan string to confirm form is $a^{+} b^{+}$

- if so: go back to front; if not: reject
X out first a, for each b, Y off that b and add c to the end
Restore crossed out b's, repeat b-c loop for next a
- If all a's gone, accept

TM 4: Element distinctiveness

Given a list of strings over $\{0,1\}$, separated by \#, accept if all strings are different:

Example: 01101\#1011\#00010

TM 4 solution

1. Place mark on top of left-most symbol. If it is blank: accept; if it is \#: continue, otherwise: reject
2. Scan right to next \# and place mark on it. If none encountered and reach blank: accept
3. Zig-zag to compare strings to right of each marked \#
4. Move right-most marked \# to the right. If no more \#: move left-most \# to its right and the right-most \# to the right of the new first marked \#. If no \# available for second marked \#: accept
5. Go to step 3

Many equivalent variants of TM

-TM that can "stay put" on tape for a given transition
-TM with multiple tapes
-TM with non-deterministic transitions

Can select convenient alternative for current problem

MultiTape TM

- Each tape has own ReadWrite Head
- Initially tape 1 has input string, all other tapes blank
- Transition does read/write on all heads at once

Equivalence of SingleTape and MultiTape TM

Convert k tape TM M to single tape TM S

- Contents of M's tapes separated by \# on S's tape
- Mark current location on each tape
- Read stage: sweep through all k tapes to check input
- Write stage: sweep through all k tapes to write output and update marker (read head) locations
- Head location out of range?
- Add new position to relevant tape, shift all other characters to right

Equivalence of Deterministic and Nondeterministic TMs

- Try all possible non-deterministic branches - breadth first search
- DTM accepts if NTM accepts
- Can use three tapes: 1 for input, 1 for current branch, 1 to track tree position

Enumerators

Enumerator E is TM with printer attached

- TM can send strings to be output by printer
- Input tape starts blank
- Language enumerated by E is collection of strings printed
- E may print infinitely

Theorem: A language is Turing-recognizable iff some enumerator enumerates it

Proof of enumerator equivalence

If enumerator E enumerates language $A, T M M$ recognizes it

- For every w generate by E, M runs E and checks if w in output

If TM M recognizes language, A , can construct enumerator E for A:

- s1, s2, s3, ... be list of all possible strings
- For $\mathrm{i}=1,2, \ldots$
- Run M for i steps on s1, s2, ..., si
- If string accepted, print it

An Algorithm

is a collection of simple instructions for carrying out some task

Hilbert's Problems

In 1900, David Hilbert proposed 23 mathematical problems

Problem \#10

- Devise algorithm to determine if a polynomial has an integral root.
- Example: $6 x^{3} y z^{2}+3 x y^{2}-x^{3}-10$ has root $x=5, y=3, z=0$

General algorithm for Problem 10 does not exist!

Church-Turing Thesis

- Intuition of thesis: algorithm == corresponding Turing machine
- Algorithm described by TM also can be describe by λ-calculus (devised by Alonzo Church)

Hilbert's $10^{\text {th }}$ problem

Is language D decidable, where $D=\{p \mid p$ is polynomial with integral root\}

Devise procedure:

- Try all ints, starting at $0: x=0,1,-1,2,-2,3,-3, \ldots$
- You may never terminate - so not decidable

Exception: univariate case for root is decidable

Levels of description

For FA and PDA

- Formal or informal description of machine operation

Graph connectivity problem

Let A be all strings representing graphs that are connected (any node can be reached by any other)
$A=\{\langle G>| G$ is connected undirected graph $\}$
Describe TM M to decide language

Algorithm:

1. Select and mark first node of G
2. Repeat below until no new nodes marked:

- For each node in G, mark if it is attached to already-marked node

3. Scan all nodes of G - if all marked, accept; else, reject
