
1. Provide two valid strings in the languages described by each of the following 
regular expressions, with alphabet Σ = {0,1,2}. 
 

(a) 0(010)∗1 
Examples:  01, 00101, 00100101, 00100100100101 

 
 

(b) (21 ∪ 10)∗0012∗ 
 

 

 

(c) 1∗(200)∗ ∪ 100∗01 
 
 
 
2. For each of the following DFAs, provide a Regular Expression to describe the 
language, with alphabet Σ = {𝑎, 𝑏}. 

(a) RED QUESTION 

 
 
 
 

(b) BLUE QUESTION 

 
L(B) = aa*b(aUb)* U bb* 
 



 
(c) GREEN QUESTION 

 
 
 
3. Create a DFA to accept each of the following languages. 
A={w | last number in w is even} ,  given alphabet Σ = {0,1,2,3} 
 
 
 
B={w | at least three symbols in w} ,  given alphabet Σ = {𝑎, 𝑏, 𝑐} 
 
 
 
C={w | sum of digits in w equals 2} ,  given alphabet Σ = {0,1,2} 

 
 
 
4. Convert each of the following NFAs to a DFA, with alphabet Σ = {𝑎, 𝑏}. 
 

(a) RED QUESTION 

 



 
 
 
 
 
 
 

(b) GREEN QUESTION 

 
 

 

(c) BLUE QUESTION 

 
 
 
ANSWER: 

 
 
 



5. Prove the following languages are not regular. 
(a) A={bk!a | k>0} 
Pumping lemma! 
w = bp!a = xyz 
x=bm   y=bn   z=bp!-(m+n)a p>=n>0 
 
If w∈A,  we also need xy2z∈A --- check if this is true! 
 
xy2z = bp!+na 
to be in language a, p!+n must be (p+q)! where q>0 
 
(p+1)! = (p+1)xp! = pxp! + p!   Compare with p!+n 
n = p x p! >> p  This violates the rules of n, which must be less than p 
 
So xy2z is NOT in language A, which means bk!a cannot be pumped, which 
means it is not regular! 

 
 

(b) B={0k12k0k | k>0} 
 
 
7. Provide two valid strings for each of the following CFGs. 

(a) G1: 
S -> A | B 
A -> DC | C 
B -> EF | F 
C -> dog | cat | mouse 
D -> big | small | red | white 
E -> quickly | slowly 
F -> runs | swims | jumps | barks 
 

 
 

(b) G2: 
S -> BA | B 
B -> xBx | 𝜀 
A -> c | de | f 



 
 

(c) G3: 
S -> CaC | C 
C -> yCy | y 

CaC -> yay 
C -> yCy -> yyy 
CaC -> yCyay -> yyCyyay -> yyyyyay 
CaC -> yayCy -> yayyy  
 
8. Convert the following CFGs to CNF (same as Q7). 

(a) G1: (for G1, each word is a terminal)  
S -> A | B 
A -> DC | C 
B -> EF | F 
C -> dog | cat | mouse 
D -> big | small | red | white 
E -> quickly | slowly 
F -> runs | swims | jumps | barks 

 
 S -> DC | C | EF | F  replace A and B 

C -> dog | cat | mouse 
D -> big | small | red | white 
E -> quickly | slowly 
F -> runs | swims | jumps | barks 

 
 
 S -> DC | dog | cat | mouse | EF | runs | swims | jumps | barks 

C -> dog | cat | mouse   replace C and F in S rule 
D -> big | small | red | white 
E -> quickly | slowly 
F -> runs | swims | jumps | barks 

 
 
 

(b) G2:  
S -> BA | B 



B -> xBx | 𝜀 
A -> c | de | f 

 
 

(c) G3: 
S -> CaC | C 
C -> yBy | y 

 
 
 
 
9. Express each of the following languages as a CFG.  

(a) A = {xky2kz} 
 
 
 

(b) B = {w | w is described by (ab)*ba } 
 
 
 

(c) C = { 010k101k+2 | k >0 } 
S -> 010A111 
A -> 0A1 | 10 

 
 
10. Describe the PDA to accept each of the following languages (languages from 
Q9). 

(a) A = {xky2kz} 
 
 
 

(b) B = {w | w is described by (ab)*ba } 
 
 
 
 
 



 
(c) C = { 010k101k+2 | k >0 } 

NOTE: The answer below is slightly off: it is for k≥0, not 
k>0 

 
 
 
 
11. What is the response of PDA P1 to each input: i.e., does it reach an accept 
state? 

 
 
 Input 1: bbaa 
 
 
 
 Input 2: aaa 
 
 



 
 
 Input 3: abb 

Does not reach accept state! 
 
 
 Input 4: aaaaabbba 
 
 
 
 
 
12. Describe the configurations resulting from each of the input tapes specified 
below for the following Turing Machine. 

 
 

(a) aabb 
 
 

(b) abaaa 
q0 abaaa 
q1 bbaaa 
q0 aXaaa 
q1 aXbaa 
q1 aXbaa 
q1 aXbaa~ 
q2 aXbaa 
q2 aXbaa 



q2 aXbaa 
q2 aXbaa 
accept 
 
 

(c) aaaba 
 
 
13. Express the following problems as languages. 
 

(a) Determine if two specified CFG’s accept complementary inputs – every 
accepted input for the first CFG is rejected by the second CFG and vice 
versa. 

L={<G1,G2> | L(G1) = (L(G2)’)} 
 

(b) Determine if a specified DFA accepts a specified string repeated zero or 
more times. 

 
 
 

(c) Determine if a specified Turing machine accepts the same language as a 
specified PDA. 

 
 
 
14. Prove the follow languages are decidable. 

(a) Determine if a specified DFA accepts a specified string repeated zero or 
more times. 

 
 
 

(b) Determine if a specified CFG is in Chomsky Normal Form. 
Each CFG has a finite number of rules. For each rule, simply test if it has one 
terminal or two variables. If ever find a rule that fails these criteria, reject. 
Looping through the rules takes a finite number of steps, so the algorithm to 
determine this question will halt with “accept” or “reject” decision for every 
grammar. 



 
 

(c) Determine if a specified CFG does not accept a specified word. 
 
 
 
 
 
15. Provide a big-O and a little-o complexity for each function. 
 

(a) f(n) = 20 n log n + 5n + 2 
 
 

(b) f(n) = 30 n3 + 6 n5 + log n 
 
 

(c) f(n) = 5 n2 + n3 log n + 4n + 8 
Smallest: O(4n); alternatively O(n 4n), O(4n log n) 
Small: o(4n log n),  o(n 4n) … anything bigger than o(4n) 
 

 
 
16. Compute the complexity for each algorithm described below. 
 

(a) Algorithm 1: (State the complexity based on r and c) 
Start with a table of r rows and c columns 
1. Sum the elements in each row 

- Use a running sum with a loop across all columns 
2. Find the row with the maximum sum  

- Loop through all rows, saving biggest sum and its row in two separate 
variables  

 
Step 1: r x c  Step 2: r 
In total: O(r c) 

 
 

(b) Algorithm 2: (State the complexity based on n) 



Start with a list of n elements 
1. While list is longer than 1 element long 

- Replace each pair of elements with the product of the two elements 
(elements 1 and 2 replaced by single product, elements 3 and 4 
replaced by single product, elements 5 and 6 replaced by single 
product, etc.) 

 
 
17. Determine if the following problems are in P and/or NP.  
 

(a) Given a directed graph and two nodes a and b, determine if there are at 
least two different paths to get from node a to node b. Paths are 
“different” if they differ by at least one edge. 

 
 
 

(b) In an undirected graph, determine if every node is attached to every other 
node. 

 
 
 

(c)  Determine if the language of a DFA is empty. 
Algorithm involves marking states in DFA until no new states marked. This 
take O(n3) time, where n is the number of nodes (go through O(n2) edges at 
most n times (given n nodes)). Thus, DFA is in P, and also in NP (all of P is 
in NP). 


