
1. Provide two valid strings in the languages described by each of the following
regular expressions, with alphabet Σ = {0,1,2}.

(a) 0(010)∗1
Examples: 01, 00101, 00100101, 00100100100101

(b) (21 ∪ 10)∗0012∗

(c) 1∗(200)∗ ∪ 100∗01

2. For each of the following DFAs, provide a Regular Expression to describe the
language, with alphabet Σ = {𝑎, 𝑏}.

(a) RED QUESTION

(b) BLUE QUESTION

L(B) = aa*b(aUb)* U bb*

(c) GREEN QUESTION

3. Create a DFA to accept each of the following languages.
A={w | last number in w is even} , given alphabet Σ = {0,1,2,3}

B={w | at least three symbols in w} , given alphabet Σ = {𝑎, 𝑏, 𝑐}

C={w | sum of digits in w equals 2} , given alphabet Σ = {0,1,2}

4. Convert each of the following NFAs to a DFA, with alphabet Σ = {𝑎, 𝑏}.

(a) RED QUESTION

(b) GREEN QUESTION

(c) BLUE QUESTION

ANSWER:

5. Prove the following languages are not regular.
(a) A={bk!a | k>0}
Pumping lemma!
w = bp!a = xyz
x=bm y=bn z=bp!-(m+n)a p>=n>0

If w∈A, we also need xy2z∈A --- check if this is true!

xy2z = bp!+na
to be in language a, p!+n must be (p+q)! where q>0

(p+1)! = (p+1)xp! = pxp! + p! Compare with p!+n
n = p x p! >> p This violates the rules of n, which must be less than p

So xy2z is NOT in language A, which means bk!a cannot be pumped, which
means it is not regular!

(b) B={0k12k0k | k>0}

7. Provide two valid strings for each of the following CFGs.

(a) G1:
S -> A | B
A -> DC | C
B -> EF | F
C -> dog | cat | mouse
D -> big | small | red | white
E -> quickly | slowly
F -> runs | swims | jumps | barks

(b) G2:
S -> BA | B
B -> xBx | 𝜀
A -> c | de | f

(c) G3:
S -> CaC | C
C -> yCy | y

CaC -> yay
C -> yCy -> yyy
CaC -> yCyay -> yyCyyay -> yyyyyay
CaC -> yayCy -> yayyy

8. Convert the following CFGs to CNF (same as Q7).

(a) G1: (for G1, each word is a terminal)
S -> A | B
A -> DC | C
B -> EF | F
C -> dog | cat | mouse
D -> big | small | red | white
E -> quickly | slowly
F -> runs | swims | jumps | barks

 S -> DC | C | EF | F replace A and B

C -> dog | cat | mouse
D -> big | small | red | white
E -> quickly | slowly
F -> runs | swims | jumps | barks

 S -> DC | dog | cat | mouse | EF | runs | swims | jumps | barks

C -> dog | cat | mouse replace C and F in S rule
D -> big | small | red | white
E -> quickly | slowly
F -> runs | swims | jumps | barks

(b) G2:
S -> BA | B

B -> xBx | 𝜀
A -> c | de | f

(c) G3:
S -> CaC | C
C -> yBy | y

9. Express each of the following languages as a CFG.

(a) A = {xky2kz}

(b) B = {w | w is described by (ab)*ba }

(c) C = { 010k101k+2 | k >0 }
S -> 010A111
A -> 0A1 | 10

10. Describe the PDA to accept each of the following languages (languages from
Q9).

(a) A = {xky2kz}

(b) B = {w | w is described by (ab)*ba }

(c) C = { 010k101k+2 | k >0 }

NOTE: The answer below is slightly off: it is for k≥0, not
k>0

11. What is the response of PDA P1 to each input: i.e., does it reach an accept
state?

 Input 1: bbaa

 Input 2: aaa

 Input 3: abb

Does not reach accept state!

 Input 4: aaaaabbba

12. Describe the configurations resulting from each of the input tapes specified
below for the following Turing Machine.

(a) aabb

(b) abaaa
q0 abaaa
q1 bbaaa
q0 aXaaa
q1 aXbaa
q1 aXbaa
q1 aXbaa~
q2 aXbaa
q2 aXbaa

q2 aXbaa
q2 aXbaa
accept

(c) aaaba

13. Express the following problems as languages.

(a) Determine if two specified CFG’s accept complementary inputs – every
accepted input for the first CFG is rejected by the second CFG and vice
versa.

L={<G1,G2> | L(G1) = (L(G2)’)}

(b) Determine if a specified DFA accepts a specified string repeated zero or
more times.

(c) Determine if a specified Turing machine accepts the same language as a
specified PDA.

14. Prove the follow languages are decidable.

(a) Determine if a specified DFA accepts a specified string repeated zero or
more times.

(b) Determine if a specified CFG is in Chomsky Normal Form.
Each CFG has a finite number of rules. For each rule, simply test if it has one
terminal or two variables. If ever find a rule that fails these criteria, reject.
Looping through the rules takes a finite number of steps, so the algorithm to
determine this question will halt with “accept” or “reject” decision for every
grammar.

(c) Determine if a specified CFG does not accept a specified word.

15. Provide a big-O and a little-o complexity for each function.

(a) f(n) = 20 n log n + 5n + 2

(b) f(n) = 30 n3 + 6 n5 + log n

(c) f(n) = 5 n2 + n3 log n + 4n + 8
Smallest: O(4n); alternatively O(n 4n), O(4n log n)
Small: o(4n log n), o(n 4n) … anything bigger than o(4n)

16. Compute the complexity for each algorithm described below.

(a) Algorithm 1: (State the complexity based on r and c)
Start with a table of r rows and c columns
1. Sum the elements in each row

- Use a running sum with a loop across all columns
2. Find the row with the maximum sum

- Loop through all rows, saving biggest sum and its row in two separate
variables

Step 1: r x c Step 2: r
In total: O(r c)

(b) Algorithm 2: (State the complexity based on n)

Start with a list of n elements
1. While list is longer than 1 element long

- Replace each pair of elements with the product of the two elements
(elements 1 and 2 replaced by single product, elements 3 and 4
replaced by single product, elements 5 and 6 replaced by single
product, etc.)

17. Determine if the following problems are in P and/or NP.

(a) Given a directed graph and two nodes a and b, determine if there are at
least two different paths to get from node a to node b. Paths are
“different” if they differ by at least one edge.

(b) In an undirected graph, determine if every node is attached to every other
node.

(c) Determine if the language of a DFA is empty.
Algorithm involves marking states in DFA until no new states marked. This
take O(n3) time, where n is the number of nodes (go through O(n2) edges at
most n times (given n nodes)). Thus, DFA is in P, and also in NP (all of P is
in NP).

