1. Consider the state diagram for the following DFAs. For each, answer the following questions:
(1) What state is reached by the input: $w=00110$?
(2) What is the transition function?
(3) What is the language recognized?

M1:

M2:

(1) $q_{2} \quad q_{0}(0)->q_{0} 0 \rightarrow q_{0}(1)->q_{1}(1)->q_{2}(0)->q_{2}$
(2)

	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{q}_{\mathbf{0}}$	$\mathbf{q}_{\mathbf{0}}$	\mathbf{q}_{1}
\mathbf{q}_{1}	\mathbf{q}_{1}	\mathbf{q}_{2}
$\mathbf{q}_{\mathbf{2}}$	$\mathbf{q}_{\mathbf{2}}$	\mathbf{q}_{0}

(3) $\{w \mid$ the number of 1 's entered is a multiple of 3$\}$ $\left\{0^{*}\left(10^{*} 10^{*} 10^{*}\right)^{*}\right\}$

M3:

2. Define a machine to recognize the following languages in the alphabet

$$
\Sigma=\{1,2,3\}
$$

(5 points)
$L 4=\{w \mid$ the product of input symbols is even \quad E.g., $111->1 \times 1 \times 1=1$ is odd-reject, $233->2 \times 3 \times 3=18$ is even-accept
$L 5=\{w \mid$ numbers entered in non-decreasing order\} Examples: 112223, 122333

L6=\{w | first two symbols are identical\} Examples: 001213, 333212, 3310013

3. Prove the following languages are regular, using the alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$:

L7=\{w | w contains an odd number of b's $\}$
Define a DFA to detect the language and/or show a regular expression captures the language.

$(a U c){ }^{*} b(a U c)^{*}\left((a U c){ }^{*} b(a U c){ }^{*} b(a U c){ }^{*}\right)$

L8=\{w | w contains the sequence bcb\} (Examples: aabbbcbb or ccbcba)

L9=\{w | w does not have three a's in a row\}
4. Consider the following NFAs. For each, answer:
(1) what state(s) will be reached by the input: 0011
(2) provide a regular expression to describe the recognized language
(3) For N11 and N12, convert NFA to DFA

N10:

(1) No state - it will be rejected!
(2) $1\left(0^{*} \cup 0^{*}\left(0^{*} 01\right) *\right.$

N11:

N12:

5. For each regular expression using $\Sigma=\{\mathrm{a}, \mathrm{b}\}$:
(1) Provide three example words.
(2) Convert these regular expressions to a DFA or NFA

L13=\{ab* ${ }^{*}$ ba) $\left.{ }^{*}\right\}$
L14=\{(a $\left.\cup \mathbf{b}) \mathbf{b a}^{*}\right\}$

L15=\{(bb)* $\left.\cup(\mathbf{a a})^{*}\right\}$
(1) Examples: bb, aa, bbbbbb, aaaaaa, $\boldsymbol{\varepsilon}$
(2)

6. What is the minimum pumping length for each of these languages, showing these languages are regular? We use the alphabet $\Sigma=\{0,1,2\}$
$\mathrm{L} 16=\left\{00(0 \cup 1)^{*} 12\right\}$
L17=\{0(22)*10\}
$\mathrm{p}=5$, minimum pumpable string is 02210

L18=\{111(202)*210\}

If pumping length is $p=5$, how would you break up string w into x, y, and z for languages L below?

L19 $=\left\{20(11)^{*} 001\right\}, \quad w=201111001$

L20=\{ (121)*001 \} w=121001
7. Consider the language $L 21=\left\{01(101)^{*} 11\right\}$, what is the error in each of the following "pumping lemma" arguments?

Argument 1: Let us take $\mathbf{w = 0 1 1 1}, \mathrm{w} \in \mathrm{L} 21$. We cannot divide $\mathbf{w = x y z}$ such that $y^{i} z \in \operatorname{L21}, i \geq 0$. For example, if $x=0, y=11$, and $z=1, x^{2} z=011111 \notin L 21$. Therefore, $\mathbf{L 2 1}$ is not regular.

The pumping length is $p=7$. Using any strings in $\mathbf{L 2 1}$ with length less than pumping length is not necessarily pumpable, and the inability to pump a tooshort string does not prove anything. You can only test pumping on strings with at least as many characters as the pumping length.

Argument 2: Let us take $\mathbf{w = 0 1 1 0 1 1 0 1 1 1 , ~} \mathbf{w} \in \operatorname{L21}$. If we divide $\mathbf{w = x y z}$ as follows: $x=0110110, y=11, z=1$, we cannot repeat y such that $x y^{i} z \in L 21, i \geq 0$. For example, if $x^{2} z=011011011111 \notin \mathbf{L 2 1}$. Therefore, $\mathbf{L 2 1}$ is not regular.
8. Prove these languages are not regular.

L24 $=\left\{0^{n} 1^{2 n} 0^{3 n} \mid n>0\right\}$
Proof by contradiction with pumping lemma:
Assume L24 is pumpable. Now consider w=0 $0^{p} 2^{2 p} 0^{3 p}$, which is element of L24 with $|w|>p$. Thus, w must be pumpable.
$w=x y z \quad x=0^{j} \quad y=0^{k} \quad z=0^{(p-(j+k))} 2^{2 p} 0^{3 p} \quad j+k \leq p$
Try pumping w: $\quad x^{2} z \rightarrow 0^{j} 0^{2 k} 0^{p-(j+k)} 2^{2 p} 0^{3 p}$
$x y^{2} z$ begins with $j+2 k+p-(j+k) 0$'s $. . . j+2 k+p-(j+k)=p+k 0 ' s$
$x y^{2} z$ begins with $p+k 0$'s followed by $2 p 1$ 1's.
$2 p \neq p+k$, so $x y^{2} z \notin L 24$, which means $L 24$ is not regular!
L25=\{1 $\left.1^{n^{3}} \mid n>0\right\}$
9. For each of the following grammars, list three strings produced by the grammar

G26:

S-> AB | BA
$A \rightarrow x A y \mid \varepsilon$ $B->B z B \mid y$

Examples: $A B->\varepsilon y->y$
BA -> yxAy -> yxxAyy -> yxxeyy -> yxxyy
AB -> عBzB -> \&BzBzy -> عBzBzyzy -> عyzyzyzy

G27:
S -> A | AA
A -> 00 | 11

G28:
A -> 11A00 | ε
10. Provide the languages described by two of the grammars:

G27 (from above)

G28 (from above)
10. Provide a grammar to produce the following languages
$\mathrm{L32}=\left\{0^{n}(11)^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$
$\mathrm{L} 33=\left\{01^{*} 00^{*}\right\}$

L34 $=\left\{\mathbf{w} \mid \mathbf{w}=\mathbf{w}^{\text {Reverse }}\right\} \quad$ Examples: 00100, 10101, 1111
S-> OSO | 1 S1 | $0|1| \varepsilon$
11. Convert the following grammars to Chomsky Normal Form

G29:
S-> xAy | BA
$A->z \mid A z A$

$$
\text { B -> yB \| } \varepsilon
$$

Remove the ε
S \rightarrow xAy | BA | A
$A->z \mid A z A$
$B \rightarrow y B \mid y$

Remove the $S->A$ unit rule
S $\rightarrow x A y|B A| z \mid A z A$
$A->z \mid A z A$
$B \rightarrow y B \mid y$

Replace mixed terminal—variable rules with variables-only rules
$S \rightarrow U_{x} A U_{y}|B A| z \mid A U_{z} A$
$U_{x} \rightarrow x$
$U_{y}->y$
$U_{z}->z$
$A->\mid A U_{z} A$
$B \rightarrow U_{y} B \mid y$

Replace 3^{+}variable rules with 2-variables rules

$$
\begin{aligned}
& S \rightarrow U_{x} C|B A| z \mid A D \\
& C \rightarrow A U_{y} \\
& D \rightarrow U_{z} A \\
& U_{x} \rightarrow x \\
& U_{y} \rightarrow y \\
& U_{z}->z \\
& A \rightarrow z \mid A D \\
& B \rightarrow U_{y} B \mid y
\end{aligned}
$$

G30:
S-> BAB | ABA
$A->y \mid z$
$B->x|A A| \varepsilon$

G31:
S-> ByBy
B $->x B x \mid \varepsilon$

