1. Consider the state diagram for the following DFAs. For each, answer the following questions:

(1) What state is reached by the input: w=00110?

(2) What is the transition function?

(3) What is the language recognized?

M1:

M2:

(1) q ₂	q ₀ (0) ->	$q_0 0 -> q_0$	(1) -> q ₁	(1) -> q ₂	(0) -> q ₂
---------------------------	-----------------------	----------------	-----------------------	-----------------------	-----------------------

(2)

	0	1
q o	q o	qı
qı	qı	q 2
Q2	q 2	q o

(3) {w | the number of 1's entered is a multiple of 3} {0*(10*10*10*)*}

M3:

2. Define a machine to recognize the following languages in the alphabet Σ = {1,2,3}
(5 points)
L4={w | the product of input symbols is even} E.g., 111->1x1x1=1 is odd-reject, 233 -> 2x3x3 = 18 is even-accept

L5={w | numbers entered in non-decreasing order} Examples: 112223, 122333

L6={w | first two symbols are identical} Examples: 001213, 333212, 3310013

3. Prove the following languages are regular, using the alphabet $\Sigma = \{a, b, c\}$:

L7={w | w contains an odd number of b's}

Define a DFA to detect the language and/or show a regular expression captures the language.

(aUc)^{*}b(aUc)^{*}((aUc)^{*}b(aUc)^{*}b(aUc)^{*})

L8={w | w contains the sequence bcb} (Examples: aabbbcbb or ccbcba)

L9={w | w does not have three a's in a row}

4. Consider the following NFAs. For each, answer:

(1) what state(s) will be reached by the input: 0011

(2) provide a regular expression to describe the recognized language

(3) For N11 and N12, convert NFA to DFA

N10:

(1) No state – it will be rejected!
(2) 1(0^{*} U 0^{*} (0^{*}01)*

N11:

N12:

5. For each regular expression using $\Sigma = \{a, b\}$:

- (1) Provide three example words.
- (2) Convert these regular expressions to a DFA or NFA

L13={ab*(ba)*}

L14={ $(a \cup b)ba^*$ }

L15={(bb)^{*} ∪ (aa)^{*}} (1) Examples: bb, aa, bbbbbb, aaaaaa, ε (2)

6. What is the minimum pumping length for each of these languages, showing these languages are regular? We use the alphabet $\Sigma = \{0,1,2\}$

L16={00(0 \cup 1)*12}

L17={0(22)*10} p=5, minimum pumpable string is 02210

 $L18={111(202)*210}$

If pumping length is p=5, how would you break up string w into x, y, and z for languages L below?

L19={ 20(11)^{*}001 }, w=201111001

L20={ (121)^{*}001 } w=121001

7. Consider the language L21 = $\{01(101)^*11\}$, what is the error in each of the following "pumping lemma" arguments?

Argument 1: Let us take w=0111, $w \in L21$. We cannot divide w=xyz such that $y^iz \in L21$, $i \ge 0$. For example, if x=0, y=11, and z=1, $xy^2z = 011111 \notin L21$. Therefore, L21 is not regular.

The pumping length is p=7. Using any strings in L21 with length less than pumping length is not necessarily pumpable, and the inability to pump a tooshort string does not prove anything. You can only test pumping on strings with at least as many characters as the pumping length.

Argument 2: Let us take w=0110110111, $w \in L21$. If we divide w=xyz as follows: x=0110110, y=11, z=1, we cannot repeat y such that $xy^iz \in L21$, $i \ge 0$. For example, if $xy^2z = 011011011111 \notin L21$. Therefore, L21 is not regular. 8. Prove these languages are not regular.

```
L24={0<sup>n</sup>1<sup>2n</sup>0<sup>3n</sup> | n>0 }

Proof by contradiction with pumping lemma:

Assume L24 <u>is</u> pumpable. Now consider w=0<sup>p</sup>2<sup>2p</sup>0<sup>3p</sup>, which is element of L24

with |w|>p. Thus, w <u>must</u> be pumpable.

w=xyz x=0^{j} y=0^{k} z=0^{(p-(j+k))}2^{2p}0^{3p} j+k \le p

Try pumping w: xy^{2}z \rightarrow 0^{j} 0^{2k} 0^{p-(j+k)}2^{2p}0^{3p}

xy^{2}z begins with j+2k+p-(j+k) 0's ... j+2k+p-(j+k) = <u>p+k</u> 0's

xy^{2}z begins with p+k 0's followed by 2p 1's.

2p \neq p + k, so xy^{2}z \notin L24, which means L24 is not regular!
```

L25= $\{1^{n^3} | n>0\}$

9. For each of the following grammars, list three strings produced by the grammar

G26:

S -> AB | BA A -> xAy | ε B -> BzB | γ

Examples: $AB \rightarrow \epsilon y \rightarrow y$ $BA \rightarrow yxAy \rightarrow yxxAyy \rightarrow yxx\epsilon yy \rightarrow yxxyy$ $AB \rightarrow \epsilon BzB \rightarrow \epsilon BzBzy \rightarrow \epsilon BzBzyzy \rightarrow \epsilon yzyzyzy$

G27: S -> A | AA A -> 00 | 11

G28: Α -> 11Α00 | ε 10. Provide the languages described by two of the grammars:

```
G27 (from above)
```

G28 (from above)

10. Provide a grammar to produce the following languages

```
L32 = \{0^{n}(11)^{n} | n \ge 0\}
```

 $L33 = {01^*00^*}$

L34 = {w | w=w^{Reverse}} Examples: 00100, 10101, 1111 S -> 0S0 | 1S1 | 0 | 1 | ε

11. Convert the following grammars to Chomsky Normal Form

G29: S -> xAy | BA A -> z | AzA

B -> yB | ε

Remove the ε S -> xAy | BA | A A -> z | AzA B -> yB | y

Remove the S->A unit rule S -> xAy | BA | z | AzA A -> z | AzA B -> yB | y

Replace mixed terminal—variable rules with variables-only rules $S \rightarrow U_x A U_y \mid BA \mid z \mid A U_z A$ $U_x \rightarrow x$ $U_y \rightarrow y$ $U_z \rightarrow z$ $A \rightarrow z \mid A U_z A$ $B \rightarrow U_y B \mid y$

Replace 3⁺ variable rules with 2-variables rules $S \rightarrow U_x C \mid BA \mid z \mid AD$ $C \rightarrow AU_y$ $D \rightarrow U_z A$ $U_x \rightarrow x$ $U_y \rightarrow y$ $U_z \rightarrow z$ $A \rightarrow z \mid AD$ $B \rightarrow U_y B \mid y$

G30: S -> BAB | ABA A -> y | z

B -> x | AA | ε

G31: S-> ByBy B -> xBx | ε