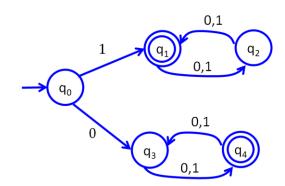
1. Consider the state diagram for the following DFAs. For each, answer the following questions:

(1) What state is reached by the input: w=00110?

(2) What is the transition function?

(3) What is the language recognized?

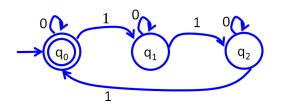
M1:

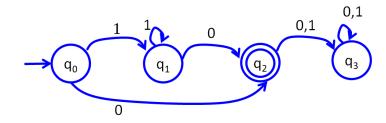


(1) q ₃ (2)	$(q_0 (0) \rightarrow q_3 (0) \rightarrow q_4 (1) \rightarrow q_3 (1) \rightarrow q_4 (0) \rightarrow q_3)$		
	0	1	
q 0	q 3	q 1	
q 1	q ₂	q ₂	
q ₂	q 1	q 1	
q 3	q 4	q 4	
q 4	Q 3	Q 3	

(3) {w | w is 0 followed by odd number of digits or w is 1 followed by even number of digits} $\{1((0 \cup 1)(0 \cup 1))^* \cup 0(0 \cup 1)((0 \cup 1)(0 \cup 1))^*\}$

M2:

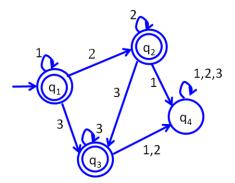




- 2. Define a machine to recognize the following languages in the alphabet $\Sigma = \{1,2,3\}$
- (5 points)

L4={w | the product of input symbols is even} E.g., 111->1x1x1=1 is odd-reject, 233 -> 2x3x3 = 18 is even-accept

L5={w | numbers entered in non-decreasing order} Examples: 112223, 122333



L6={w | first two symbols are identical} Examples: 001213, 333212, 3310013

3. Prove the following languages are regular, using the alphabet $\Sigma = \{a, b, c\}$:

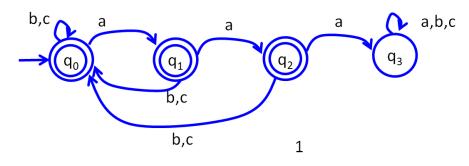
L7={w | w contains an odd number of b's}

L8={w | w contains the sequence bcb} (Examples: aabbbcbb or ccbcba)

M3:

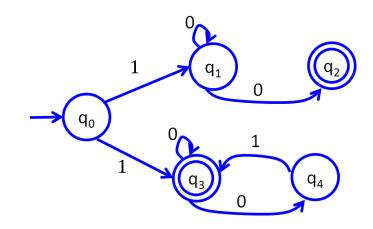
L9={w | w does not have three a's in a row}

Construct a DFA that recognizes three a's in a row, then flip the accept and reject states.

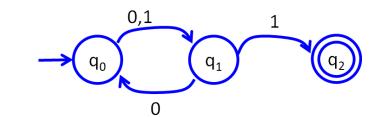


- 4. Consider the following NFAs. For each, answer:
- (1) what state(s) will be reached by the input: 0011
- (2) provide a regular expression to describe the recognized language
- (3) For N11 and N12, convert NFA to DFA

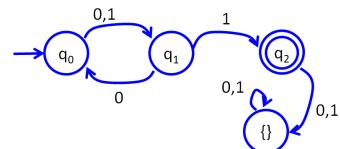
N10:



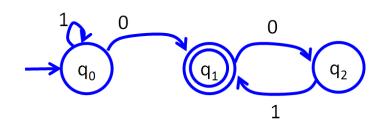
N11:



(1) q_2 q_0 (0)-> q_1 (0) -> q_0 (1) -> q_1 (1) -> q_2 (2) (0U1)(0(0U1))*1 or alternatively: $\Sigma(0\Sigma)*1$ (3)



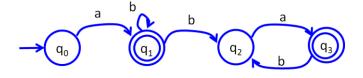
N12:



- 5. For each regular expression using $\Sigma = \{a, b\}$:
- (1) Provide three example words.
- (2) Convert these regular expressions to a DFA or NFA

L13={ab*(ba)*}

- (1) a, ababa, abbb, abbbaba
- (2) CORRECTED OCTOBER 16, 11:45pm



```
L14={(a \cup b)ba^*}
```

```
L15={(bb)^* \cup (aa)^*}
```

6. What is the minimum pumping length for each of these languages, showing these languages are regular? We use the alphabet $\Sigma = \{0,1,2\}$

L16={00 $(0 \cup 1)^*$ 12}

p=5: 00012 or 00112 are the smallest strings you can pump

 $L17=\{0(22)^*10\}$

```
\textbf{L18=} \{ 111(202)^*210 \}
```

If pumping length is p=5, how would you break up string w into x, y, and z for languages L below?

L19={ 20(11)^{*}001 }, w=201111001

L20={ (121)^{*}001 } w=121001 x=ε y=121 z=001

7. Consider the language L21 = $\{01(101)^*11\}$, what is the error in each of the following "pumping lemma" arguments?

Argument 1: Let us take w=0111, $w \in L21$. We cannot divide w=xyz such that $xy^iz \in L21$, $i \ge 0$. For example, if x=0, y=11, and z=1, $xy^2z = 011111 \notin L21$. Therefore, L21 is not regular.

Argument 2: Let us take w=0110110111, $w \in L21$. If we divide w=xyz as follows: x=0110110, y=11, z=1, we cannot repeat y such that $xy^iz \in L21$, $i \ge 0$. For example, if $xy^2z = 011011011111 \notin L21$. Therefore, L21 is not regular.

We divided w improperly to allow pumping. There exist other divisions of w that <u>are pumpable</u>, such as: x=01, y=101, z=10111

8. Prove these languages are not regular.

```
L24={0<sup>n</sup>1<sup>2n</sup>0<sup>3n</sup> | n>0 }
```

L25={ 1^{n^3} | n>0}

9. For each of the following grammars, list three strings produced by the grammar

G26: S -> AB | BA A -> xAy | ε B -> BzB | y

G27:

S -> A | AA A -> 00 | 11

G28: Α -> 11Α00 | ε

Examples: ε, 1100, 11110000, 111111000000

10. Provide the languages described by two of the grammars:

G27 (from above)

G28 (from above)

 ${\sf L}{=}\{(11)^n(00)^n \ | \ n \geq 0\}$

10. Provide a grammar to produce the following languages

 $L32 = \{0^{n}(11)^{n} | n \ge 0\}$

L33 = $\{01^*00^*\}$ Think of a standard DFA and convert from there G33: S -> $0R_1$ $R_1 -> 1R_1 | 0R_2$ $R_2 -> 0R_2 | \epsilon$

L34 = {w | w=w^{Reverse}} Examples: 00100, 10101, 1111

11. Convert the following grammars to Chomsky Normal Form

```
G29:
S -> xAy | BA
A -> z | AzA
B-> yB | ε
G30:
S->BAB | ABA
A \rightarrow y \mid z
B \rightarrow x | AA | \varepsilon
Remove ε
S -> BAB | ABA | AB | BA | A | AA
A \rightarrow y \mid z
B -> x | AA
Remove unit S->A
S -> BAB | ABA | AB | BA | y | z | AA
A \rightarrow y \mid z
B -> x | AA
Convert 3<sup>+</sup> variable rules to chain of 2-variable rules
S->BC | AD | AB | BA | y | z | AA
C -> AB
D -> BA
A \rightarrow y \mid z
B -> x | AA
```

G31: S-> ByBy B -> xBx | ε