CISC 4090
Theory of Computation

Professor Daniel Leeds dleeds@fordham.edu

JMH 332

Theory of computation

Computability:

What computations can be performed by machine X ?

Complexity:

How long does it take to complete computation Y ?
NP completeness

Requirements

- Attendance and participation
- Lectures
- Homeworks - roughly 5 across semester
- Quizzes - each 15 minutes, 4 across semester
- Final project
- Exams - 1 midterm, 1 final
- Academic integrity - may discuss assignments with your classmates, but you MUST write all your answers yourself

This is a challenging course!

Read and re-read course materials

- Text and lecture notes
- Practice problems

Ask questions

- In class
- In office hours JMH 332
- Of fellow students (without plagiarizing!)

Start assignments early

- Homeworks may take 3-7 hours

Michael Sipser

Course website

http://storm.cis.fordham.edu/leeds/cisc4090

Go online for

- Announcements
- Lecture slides
- Course materials/handouts
- Assignments

Instructor

Prof. Daniel Leeds
dleeds@fordham.edu
Office hours: Mon 4:30-5:30, Thu 11:30-12:30
Office: JMH 332

Mathematical background

Review of CISC 1400 (and/or 1100)

- Sets
- Logic
- Functions
- Graphs
- Proofs

Sets

Ordered-pairs, or k-tuples

- Ordered group of objects:

$$
\text { e.g., }(1,3,5) \text { or }(81,3,1,12,5)
$$

- Cartesian product: AxB -> yields set of tuples
- Key concepts/operations:
- Subsets: $A \subset B, A \subseteq B$
- Cardinality: $|\mathrm{A}|$
- Intersection $A \cap B$, Union $A \cup B$, Complement A^{\prime}
- Venn Diagrams
- Power set: P(A)

If $|A|=4$, what is $|P(A)|$?

- Given j sets $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots \mathrm{~A}_{\mathrm{j}}, \mathrm{A}_{1} \times \mathrm{A}_{2} \times \ldots \times \mathrm{A}_{\mathrm{j}}=\left\{\left(a_{1}, a_{2}, \cdots, a_{j}\right) \mid a_{i} \in A_{i}\right\}$
- \mathbb{Z}^{2} represents $\mathbb{Z} \times \mathbb{Z}$ which is $\{(a, b) \mid a \in \mathbb{Z}$ and $b \in \mathbb{Z}\}$

Logic

Operations

- AND $\quad \mathrm{T} \wedge T \equiv T$, all else is F
- OR $\quad \mathrm{F} \vee F \equiv F$, all else T
- NOT $\quad \mathrm{T}^{\prime} \equiv \neg T \equiv F$
- IMPLIES $\mathrm{T} \rightarrow F \equiv F$, all else T

Functions

A function maps inputs to a single output

- $f(a)=b$
func: Domain -> Co-domain

Examples: Assume integer inputs

- $g(x)=x^{2}$
- $h(y)=y+5$
- $m(x, y)=x-y$

Graphs

A graph is a set of vertices and edges

- $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- V=\{A, B, C, D\}
- $\mathrm{E}=\{(\mathrm{A}, \mathrm{B}),(\mathrm{A}, \mathrm{C}),(\mathrm{C}, \mathrm{D}),(\mathrm{A}, \mathrm{D}),(\mathrm{B}, \mathrm{C})\}$

Graph terminology

- Degree of vertex: number of touching edges
- Path: sequence of nodes connected by edges
- Simple path: path with no repeat nodes
- Cycle: Path starting and ending in same node

Proofs

Example 1

Claim: All positive integers are divisible by 3

Types of proof

- Counterexample
- Contradiction
- Induction
- Construction - main technique we'll use this semester

Example 1

Claim: All positive integers are divisible by 3

Example 2

Claim: There are no positive integer solutions to the equation $x^{2}-y^{2}=1$

Proof by counterexample:

- Let $\mathrm{x}=2$
- x is a positive integer
- x is not divisible by 3

We have disproved our claim!

Example 2

Claim: There are no positive integer solutions to the equation $x^{2}-y^{2}=1$

Example 3

Claim: For $x \geq 1,2+2^{2}+2^{3}+\ldots+2^{\mathrm{x}}=2^{\mathrm{x}+1}-2$

Proof by contradiction:

- Assume there IS an integer solution
- $x^{2}-y^{2}=(x-y)(x+y)=1$
- Either (a) $x-y=1$ and $x+y=1 \quad$ OR (b) $x-y=-1$ and $x-y=-1$
- (a) $x=1, y=0$ - non-positive!
(b) $x=-1$ and $y=0-$ non-positive!

Example 3

Claim: For $x \geq 1,2+2^{2}+2^{3}+\ldots+2^{\mathrm{x}}=2^{x+1}-2$

Proof by induction

- Base case: $x=1 \quad 2=2^{1+1}-2=4-2=2$
- Assume true for $x=k$, prove for $x=k+1$
- $2^{(k+1)+1}-2=2^{k+2}-2=2 \times 2^{(k+1)}-2$

$$
\begin{aligned}
& =2 x\left(2+2+2^{2}+\ldots+2^{k}\right)-2 \\
& =4+2^{2}+2^{3}+\ldots+2^{k+1}-2 \\
& =2+2^{2}+2^{3}+\ldots+2^{k+1}
\end{aligned}
$$

Example 4

Claim: For every even number $n>2$, there is a 3 -regular graph with n nodes (Theorem $0.22, \mathrm{p} 21$)

Graph is k-regular if every node has degree k

Proof by construction:

- Try constructing for $n=4, n=6, n=8$
- Describe a general pattern
- Place nodes in a circle, connect each node to its neighbor, connect each node to farthest node diagonally across

