CISC 4090
 Theory of Computation

Context-Free Languages and Push Down Automata

Professor Daniel Leeds dleeds@fordham.edu

JMH 332

An example Context-Free Grammar

Grammar G1	Example strings generated:
$A \rightarrow 0 \mathrm{~A} 1$	\#, 0\#1, 00\#11, 000\#111, ...
$A \rightarrow B$	
B \rightarrow \#	$L(G 1)=\left\{0^{n} \# 1^{n} \mid n \geq 0\right\}$

Variables: A, B; Terminals: 0, 1, \#
One start variable
Substitution rules/productions

- Variable -> Variables, Terminals

Grammar G1
$\mathrm{A} \rightarrow 0 \mathrm{~A} 1$
$\mathrm{A} \rightarrow \mathrm{B}$
B \rightarrow \#
$L(G 1)=\left\{0^{n} \# 1^{n} \mid n \geq 0\right\}$

Languages: Regular and Beyond
Regular: $(\mathrm{a} \cup \mathrm{b}) \cdot \mathrm{c}^{*} \cdot \mathrm{~b} \cdot(\mathrm{~d} \cup \mathrm{e} \cup \mathrm{a})$
Not-regular: $\mathrm{c}^{\mathrm{n}} \mathrm{bd}^{\mathrm{n}}$

Context Free Grammars:

- Human language
- Parsing of computer language

Example English Grammar

Sentence -> NounPhrase VerbPhrase
NounPhrase -> Article NounSub
NounSub -> Noun | Adjective NounSub
VerbPhrase -> Verb | Verb NounPhrase
Noun -> Girl \| Boy | Duck | Ball
Article -> The | A
Verb -> Throws \| Sings

Formal CFG Definition

A CFG is a 4-tuple ($\mathrm{V}, \Sigma, \mathrm{R}, \mathrm{S}$)

-V is finite set of variables

- Σ finite set of terminals
- R finite set of rules
- $S \in V$ start variable

> Another example
> G3 $=(\{\mathrm{S}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{R}, \mathrm{S})$
> $\mathrm{R}: \quad \mathrm{S} \rightarrow \mathrm{aSb}|\mathrm{SS}| \varepsilon$

Example strings generated:
ε, ab, abab, aabb, aaabbbab,
ababababab, abaaabbb, ...
$L(G 1)=\{a \prime s$ \& b's; each a is followed by a matching b, every b matches exactly one corresponding preceding $a\}$ (like parenthesis matching)

Designing CFGs

Creativity required

- If CFL is union of simpler CFL, design grammar for simpler ones (G1, G2, G3), then combine: S -> G1 | G2 | G3
- If language is regular, can make CFG mimic DFA

Match each state with a single corresponding variable

$$
Q=\left\{q_{0}, \ldots, q_{n}\right\} \quad V=\left\{R_{0}, \ldots, R_{n}\right\}
$$

Ambiguity - examples

A grammar may generate a string in multiple ways
Math example:
Expr \rightarrow Expr + Expr \mid Expr \times Expr $|\operatorname{Expr}| \mathrm{a}$

English example:
Replace transition function with Production rule
the girl touches the boy with the flower

$$
\begin{gather*}
\delta\left(q_{i}, a\right)=q_{j} \quad R_{i} \rightarrow a R_{j} \\
\text { Accept state } \mathrm{q}_{\mathrm{k}}: \text { transition to } \varepsilon \quad R_{k} \rightarrow \varepsilon \tag{9}
\end{gather*}
$$

Ambiguity - definitions

A grammar generates a string ambiguously if there are two or more different parse trees

Definitions:

- Leftmost derivation: at each step the leftmost remaining variable is replaced
- w is derived ambiguously in CFG G if there exist more than one leftmost derivations

a+axa+a leftmost derivations

Derivation 1:	Derivation 2:
Expr	Expr
Expr x Expr	Expr + Expr
Expr + Expr x Expr	Expr x Expr + Expr
$a+$ Expr x Expr	Expr + Expr \times Expr + Expr
$a+a \times$ Expr	$a+$ Expr \times Expr + Expr
$a+a \times$ Expr + Expr	$a+a \times$ Expr + Expr
$a+a \times a+$ Expr	$a+a \times a+$ Expr
$a+a \times a+a$	$a+a \times a+a$

Chomsky Normal Form

CFG is in Chomsky normal form if every rule takes form:

$$
\mathrm{A} \rightarrow \mathrm{BC}
$$

- B and C may not be the start variables
- The start variable may transition to ε

Any CFL can be generated by CFG in Chomsky Normal Form

Converting to Chomsky Normal Form

- $S_{0} \rightarrow S$ where S was original start variable
- Remove $A \rightarrow \varepsilon$

$$
\mathrm{A} \rightarrow \mathrm{a}
$$

- For each multiple-occurrence of A, add new rules with A deleted

$$
R \rightarrow u A v A w \quad \text { change to } \quad R \rightarrow u v A w|u A v w| u v w
$$

- Shortcut all unit rules

$$
\text { Given } A \rightarrow B \text { and } B \rightarrow u \text {, add } A \rightarrow u
$$

- Replace rules $A \rightarrow u_{1} u_{2} u_{3} \ldots u_{k}$ with:

$$
A \rightarrow u_{1} A_{1}, A_{1} \rightarrow u_{2} A_{2}, A_{2} \rightarrow u_{3} A_{3}, \ldots, A_{k-2} \rightarrow u_{k-1} u_{k}
$$

Conversion practice

Non-normal form:
$S \rightarrow a X b X$
$X \rightarrow a Y|b Y| \varepsilon$
$Y \rightarrow X \mid c$

Conversion practice, answer part 1

```
Non-normal form: Step 1: }\mp@subsup{\textrm{S}}{0}{}>>S\mathrm{ ,
\[

\]
```

Conversion practice, answer part 2

```
Step 1: So->S,
    Step 2: place \varepsilon for Y
        then place \varepsilon for X
        So}->
    Sol
    S->aXbX |abX| aXb| ab
    S->aXbX|abX|aXb|ab
    X->aY|bY|a|b
\(X \rightarrow a Y \mid b Y\)
\(Y \rightarrow X \mid c\)
\(Y \rightarrow \varepsilon|X| c\)
```


Conversion practice, answer part 3

Step 2: place ε for Y
$S_{0} \rightarrow S$
Step 3: replace S and X
$S \rightarrow a X b X|a b X| a X b \mid a b$
$S_{0} \rightarrow a X b X|a b X| a X b \mid a b$
$X \rightarrow a Y|b Y| a \mid b$
$X \rightarrow a Y|b Y| a \mid b$
$Y \rightarrow X \mid c$
$Y \rightarrow a Y|b Y| a|b| c$

Step 3: replace $S \quad$ Conversion practice, answer part 3 $S_{0} \rightarrow a X b X|a b X| a X b \mid a b$
$S \rightarrow a X b X|a b X| a X b \mid a b$
$X \rightarrow a Y|b Y| a \mid b$
$Y \rightarrow a Y|b Y| a|b| c$
Step 4: replace terminal-variable combos with variable combos
$S_{0} \rightarrow U_{1} X U_{2} X\left|U_{1} U_{2} X\right| U_{1} X U_{2} \mid U_{1} U_{2}$
$S \rightarrow U_{1} X U_{2} X\left|U_{1} U_{2} X\right| U_{1} X U_{2} \mid U_{1} U_{2}$
$X \rightarrow U_{1} Y\left|U_{2} Y\right| a \mid b$
$U_{1} \rightarrow a \quad U_{2} \rightarrow b \quad Y \rightarrow U_{1} Y\left|U_{2} Y\right| a|b| c$

Conversion practice, answer part 3

Step 4: replace terminal-variable combos with
variable combos
$S_{0} \rightarrow U_{1} X U_{2} X\left|U_{1} U_{2} X\right| U_{1} X U_{2} \mid U_{1} U_{2} \quad U_{1} \rightarrow a \quad U_{2} \rightarrow b$
$S \rightarrow U_{1} X U_{2} X\left|U_{1} U_{2} X\right| U_{1} X U_{2}\left|U_{1} U_{2} \quad X \rightarrow U_{1} Y\right| U_{2} Y|a| b$
Step 4: replace multi-variables with pairs $\stackrel{Y}{Y} \Psi\left|U_{2} Y\right| a|b| c$
$S_{0} \rightarrow U_{1} C\left|U_{1} D\right| U_{1} E \mid U_{1} U_{2}$
$S \rightarrow U_{1} C\left|U_{1} D\right| U_{1} E \mid U_{1} U_{2}$
$C \rightarrow X D \quad \mathrm{D} \rightarrow U_{2} X \quad E \rightarrow X U_{2}$
$X \rightarrow U_{1} Y\left|U_{2} Y\right| a \mid b$
$U_{1} \rightarrow a \quad U_{2} \rightarrow b \quad Y \rightarrow U_{1} Y\left|U_{2} Y\right| a|b| c$

PDA and Language $0{ }^{n 1} 1^{n}$

Read symbol from input, push each 0 onto stack As soon as see 1 's, start popping 0 for each 1 seen

- If finish reading and stack empty, accept
- If stack is empty and 1's remain, reject
- If inputs finished but stack still has 0's, reject
- In 0 appears on input, reject

Definition of PDA

A PDA is a 6 -tuple ($Q, \Sigma, \Gamma, \delta, q_{0}, F$) where Q, Σ, Γ, and F are finite sets

- Q is sets of states
- Σ is the input alphabet

PDA computation

M must start in q_{0} with empty stack
M must move according to transition function

- Γ is the stack alphabet
- $\delta: \mathrm{Q} \times \Sigma \varepsilon \times \Gamma \varepsilon \rightarrow \mathrm{P}(\mathrm{Q} \times \Gamma \varepsilon)$ is transition function

Start stack with \$. If you see \$ at top of stack, it is empty

- $\mathrm{q}_{0} \in \mathrm{Q}$ is start state
- $F \subseteq Q$ is set of accept states

Understanding transition δ

$a, b \rightarrow c$ means:

- when you read a from tape and b is on top of stack
- replace b with c on top of stack
a, b, or c can be ε
- If a is ε then change stack without reading a symbol
- If b is ε then push new symbol c without popping b
- If c is ε then no new symbol pushed, only pop b

PDA to accept $\left\{w w^{R}\right\}$

Power of non-determinism:

- At start, don't know where string w ends

PDA to accept $a^{i} b^{j} c^{k}, i=j$ or $j=k$

Power of non-determinism:

Theorem: A language is context free if and only if some PDA recognizes it

Let's prove: If a language L is CFL, some PDA recognizes it
CFG -> PDA

- If top of stack is variable, sub one right-hand rule for the variable
- If top of stack is terminal, keep going iff terminal matches input
- If top of stack is $\$$, accept!
- Stack has set of terminals/variables to compare with input
- Place proper terminal/variable pattern onto stack based on rules
- Non-determinism: Clone your machine, following different branches of rules

Regular languages vs. CFLs

- CFGs define CFLs
- PDAs recognize CFLs and Regular languages
- FSAs recognize Regular languages, but not CFLs
- CFLs and Regular languages not equivalent

Non Context Free Languages

Languages recognized by PDAs

- L=\{ww $\left.{ }^{\text {R }}\right\}$
- $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$

Languages not recognized by PDAs
Proving non context free - NEW pumping lemma!
Every string in CFL A with length greater than or equal to the pumping length p can be "pumped"

Every string $w \in A(|w| \geq p)$ can be written as uvxyz where

1. For each $\mathrm{i} \geq 0, \mathrm{uv}^{\mathrm{i}} \mathrm{xy}^{\mathrm{i}} \mathrm{z} \in \mathrm{A}$

- $L=\{w w\}$

2. \mid vy $\mid>0$

- $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$

Regular language PUMPING: Proof idea

If $|\mathrm{s}|<\mathrm{p}$, trivially true
If $|s| \geq p$, consider the states the FSA goes through

- Since there are only p states, $|s|>p$, one state must be repeated
- Pigeonhole principle: There must be a cycle

Prove $F=\left\{w w \mid w=(0 \cup 1)^{*}\right\}$ not $C F L$

Prove $B=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ not $C F L$

CFL pumping: Proof idea

Pigeonhole idea: Given a long enough string, some variable will need to be repeated
Example Grammar: T-> uRz
$R \rightarrow x \mid v R y$

Try a sample string $s=\left\{0^{p} 10^{p} 1\right\} \quad|s|>p$

- Can we define uvxyz=s so uvixyizeF ?
- Yes: $u=0^{p-1}, v=0, x=1, y=0, z=0^{p-1} 1$

Try another sample string $s=\left\{0^{p} 1^{p} 0^{p} 1^{p}\right\}$

- Can we define uvxyz=s so $u v^{i} x y^{i} z \in F$?
- No:
- If vxy is in first w, pumping will make increase 1's and/or 0's in first w but not in second
- If $v x y$ straddles the middle, vxy will either increase 1's for first w and 0 's for second w, or will break the $0^{n} 1^{n}$ pattern

