CISC 4090 Theory of Computation

Context-Free Languages and Push Down Automata

Professor Daniel Leeds dleeds@fordham.edu JMH 332

Languages: Regular and Beyond	
Regular: $(a \cup b) \cdot c^* \cdot b \cdot (d \cup e \cup a)$	
Not-regular: c ⁿ bd ⁿ	
Context Free Grammars: • Human language • Parsing of computer language	

An example Contex	t-Free Grammar
Grammar G1 $A \rightarrow 0A1$ $A \rightarrow B$	Example strings generated: #, 0#1, 00#11, 000#111,
$B \rightarrow #$	L(G1) = {0 ⁿ #1 ⁿ n≥0}
Variables: A, B; Terminals	:: 0, 1, #
One start variable	
Substitution rules/product • Variable -> Variables, Ter	

Formal CFG Definition

- A CFG is a 4-tuple (V, Σ, R, S)
- V is finite set of variables
- Σ finite set of terminals
- R finite set of rules
- ${\scriptstyle \bullet \, S \in V \text{ start variable}}$

Another example	
$G3 = ({S}, {a, b}, R, S)$ R: S \rightarrow aSb SS ε	
Example strings generated: ε, ab, abab, aaabb, aaabbbab, ababababab, abaaabbb,	
L(G1) = {a's & b's; each a is followed by a matching b, every b matches exactly one corresponding preceding a} (like parenthesis matching)	8

Designing CFGsCreativity required• If CFL is union of simpler CFL, design grammar for simpler
ones (G1, G2, G3), then combine: S -> G1 | G2 | G3• If language is regular, can make CFG mimic DFA
Match each state with a single corresponding variable
 $Q=\{q_0,...,q_n\}$
Replace transition function with Production rule
 $\delta(q_i, a) = q_j$
 $R_i \rightarrow aR_j$
Accept state q_k : transition to ε
 $R_k \rightarrow \varepsilon$

Ambiguity – examples	
A grammar may generate a string in multiple ways	
Math example: Expr \rightarrow Expr + Expr Expr \times Expr Expr a	
English example: the girl touches the boy with the flower	
	10

Ambiguity – definitions

A grammar generates a string ambiguously if there are two or more different parse trees

Definitions:

- <u>Leftmost derivation</u>: at each step the leftmost remaining variable is replaced
- *w* is derived **ambiguously** in CFG G if there exist more than one leftmost derivations

Derivation 1:	Derivation 2:	
Expr	Expr	
Expr x Expr	Expr + Expr	
Expr + Expr x Expr	Expr x Expr + Expr	
a + Expr x Expr	Expr + Expr x Expr + Expr	
a + a x Expr	a + Expr x Expr + Expr	
a + a x Expr + Expr	a + a x Expr + Expr	
a + a x a + Expr	a + a x a + Expr	
a + a x a + a	a + a x a + a	

Chomsky Normal Form

CFG is in Chomsky normal form if every rule takes form:

- $A \to BC$
- $A \rightarrow a$
- B and C may not be the start variables
- The start variable may transition to ε

Any CFL can be generated by CFG in Chomsky Normal Form

Converting to Chomsky Normal Form • $S_0 \rightarrow S$ where S was original start variable • Remove $A \rightarrow \varepsilon$ • For each multiple-occurrence of A, add new rules with A deleted $R \rightarrow uAvAw$ change to $R \rightarrow uvAw \mid uAvw \mid uvw$ • Shortcut all unit rules Given $A \rightarrow B$ and $B \rightarrow u$, add $A \rightarrow u$ • Replace rules $A \rightarrow u_1u_2u_3 \dots u_k$ with: $A \rightarrow u_1A_1, A_1 \rightarrow u_2A_2, A_2 \rightarrow u_3A_3, \dots, A_{k-2} \rightarrow u_{k-1}u_k$

Conversion practice

```
Non-normal form:
```

 $S \to aXbX$ $X \to aY|bY|\varepsilon$

 $Y \to X | c$

```
Conversion practice, answer part 1

Non-normal form: Step 1: S_0->S,

S \rightarrow aXbX then place \varepsilon for X

X \rightarrow aY|bY|\varepsilon S_0 \rightarrow S

Y \rightarrow X|c S \rightarrow aXbX|abX|aXb|ab

X \rightarrow aY|bY

Y \rightarrow \varepsilon|X|c
```

```
Conversion practice, answer part 2Step 1: S_0->S,Step 2: place \varepsilon for Ythen place \varepsilon for XS_0 \rightarrow SS_0 \rightarrow SS \rightarrow aXbX|abX|aXb|abS \rightarrow aXbX|abX|aXb|abX \rightarrow aY|bY|a|bX \rightarrow aY|bYY \rightarrow X|cY \rightarrow \varepsilon|X|c
```


Definition of PDA

A PDA is a 6-tuple $(Q,\Sigma,\Gamma,\delta,q_0,F)$ where Q, $\Sigma,\Gamma,$ and F are finite sets

- Q is sets of states
- $\bullet\,\Sigma$ is the input alphabet
- Γ is the stack alphabet
- $\delta: Q \times \Sigma \epsilon \times \Gamma \epsilon \to P(Q \times \Gamma \epsilon)$ is transition function
- $q_0 \in Q$ is start state
- $F \subseteq Q$ is set of accept states

Understanding transition δ

 $a, b \rightarrow c$ means:

- when you read a from tape and b is on top of stack
- replace b with c on top of stack

a, b, or c can be ε

- \bullet If a is ε then change stack without reading a symbol
- \bullet If b is ε then push new symbol c without popping b
- If c is ε then no new symbol pushed, only pop b

Theorem: A language is context free if and only if some PDA recognizes it

Let's prove: If a language L is CFL, some PDA recognizes it

- Idea: Show how CFG can define a PDA
- Stack has set of terminals/variables to compare with input
- Place proper terminal/variable pattern onto stack based on rules
- Non-determinism: Clone your machine, following different branches of rules

29

CFG -> PDA

- If top of stack is variable, sub one right-hand rule for the variable
- If top of stack is terminal, keep going iff terminal matches input
- If top of stack is \$, accept!

35

Prove F={ww w= $(0 \cup 1)^*$ } not CFL
Try a sample string s= $\{0^{p}10^{p}1\}$ s >p • Can we define uvxyz=s so uv ⁱ xy ⁱ z \in F ? • Yes: u= 0^{p-1} , v=0, x=1, y=0, z= $0^{p-1}1$
Try another sample string s={0 ^p 1 ^p 0 ^p 1 ^p } • Can we define uvxyz=s so uv ⁱ xy ⁱ z∈F ?
• No:
 If vxy is in first w, pumping will make increase 1's and/or 0's in first w but not in second
 If vxy straddles the middle, vxy will either increase 1's for first w and 0' for second w, or will break the 0ⁿ1ⁿ pattern

Prove B={a ⁿ b ⁿ c ⁿ n≥0} not CFL	
	38