CISC 4090
Theory of Computation

Turing machines

Professor Daniel Leeds
dleeds@fordham.edu
JMH 332

Alan Turing (1912-1954)
Father of Theoretical Computer Science
Key figure in Artificial Intelligence
Codebreaker for Britain in World War I

Turing machine
Simple theoretical machine
Can do anything a real computer can do!

Detour: “Turing test”

A computer is “intelligent” if human investigator can’t tell if she’s talking to a human or a computer
Turing machine

Simple theoretical machine
Can do anything a real computer can do!

Review of machines

- Finite state automaton (Regular languages)
- Push down automaton (Context free languages)
- Turing machine (beyond CFLs)

Turing machine structure

Infinite tape
At each step
- Can move left/right on tape
- Can change state
When reaches accept or reject state, terminates and outputs “accept” or “reject”
Can loop forever
A Turing Machine for $B = \{w#w \mid w \in \{0,1\}^*\}$

Assume the string is written on the tape and you start at the beginning of the string. What can we do?

Strategy:

Find left-most 0-or-1 character in first word
- If match left-most character in second word, X out both
- Else reject

If no characters left, accept

How do we move this with single actions: move-by-one and write?

Strategy, in more detail:

Read left-most character, X it out
Move right until find #, then move right until find 0-or-1-or-~
- If current character is ~ or mismatches with character before #: reject
- Else, X it out
Move left until pass #, keep moving until find first X
Move one to right
- If #, check right hand string,
 - If no extra chars, accept
 - If not #, go to top
Problem keeps shrinking
Will accept or reject each input

Turing machine: the formal definition

7 tuple: $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$
- Q is set of states
- Σ is input alphabet
- Γ is the tape alphabet; blank $\in \Gamma$ and $\Sigma \in \Gamma$
- $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L,R\}$ transition function
- Start, accept, and reject state: q_0, q_{accept}, q_{reject}
The transition function

\(\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{ \text{L, R} \} \)

Given state \(q \) and symbol \(a \) at present location on tape, change to state \(r \), change symbol on tape to \(b \), move Left or Right

Change in: (state, tape content, head location) – called “configuration”

Some TM details for \(B = \{ w\#w \mid w \in \{0,1\}^* \} \)

After X out the 0 at the far left, move right looking for the first digit after \# to be 0. Use state \(q_{\text{MoveTo}#} \rightarrow \{ \text{Then0} \} \)

<table>
<thead>
<tr>
<th>Transition</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta(q_{\text{MoveTo}#} \rightarrow { \text{Then0} }, 0) \rightarrow (q_{\text{MoveTo}#} \rightarrow { \text{Then0} }, 0, R))</td>
<td>011000#011000</td>
</tr>
<tr>
<td>(\delta(q_{\text{MoveTo}#} \rightarrow { \text{Then0} }, 0) \rightarrow (q_{\text{MoveTo}#} \rightarrow { \text{Then0} }, 0, R))</td>
<td>X11000#011000</td>
</tr>
</tbody>
</table>

Once we’ve passed #, search for matching digit for 0: \(q_{\text{Find}0} \)

<table>
<thead>
<tr>
<th>Transition</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta(q_{\text{Find}0}, X) \rightarrow (q_{\text{Find}0}, X, R))</td>
<td></td>
</tr>
<tr>
<td>(\delta(q_{\text{Find}0}, 0) \rightarrow (q_{\text{Find}0}, X, L))</td>
<td></td>
</tr>
<tr>
<td>(\delta(q_{\text{Find}0}, 1) \rightarrow (q_{\text{reject}}, ?, ?))</td>
<td></td>
</tr>
<tr>
<td>(\delta(q_{\text{Find}0}, ~) \rightarrow (q_{\text{reject}}, ?, ?))</td>
<td></td>
</tr>
</tbody>
</table>

“Turing recognizable” vs. “Decidable”

- \(L(M) \) – “language \textbf{recognized} by \(M \)” is set of strings \(M \) accepts
- Language is \textbf{Turing recognizable} if some Turing machine recognizes it
 - Also called “recursively enumerable”
- Machine that halts on all inputs is a \textbf{decider}. A decider that recognizes language \(L \) is said to \textbf{decide} language \(L \)
- Language is \textbf{Turing decidable}, or just \textbf{decidable}, if some Turing machine decides it

Turing Machine for \(C = \{ 0^{2n} \mid n \geq 0 \} \)
Turing Machine for $C=\{0^{2^n} \mid n \geq 0\}$

Recursive division by 2

Sweep left to right across tape, cross off every-other 0

If

• Exactly one 0: accept
• Odd number of 0s: reject
• Even number of 0s, return to front

Language $D=\{a^i b^j c^k \mid k=ixj \text{ and } i,j,k>0\}$

Multiplication on a Turing Machine!

Consider $2 \times 3 = 6$

Alternating 0s in action:

TM M2 “decides” language C

If you land on a location and want to cross it out, but it is a ~, you crossed out an even number of 0s – do another loop!

If you land on a location and want to skip over it, but it is a ~, you crossed out an odd number of 0s – reject!

TM M3 to decide $D=\{a^i b^j c^k \mid k=ixj \text{ and } i,j,k>0\}$

Scan string to confirm form is a*b*c*

• if so: go back to front; if not: reject
X out first a, for each b, x off that b and x off one c

• If run out of c’s but b’s left: reject
Restore crossed out b’s, repeat b—c loop for next a

• If all a’s gone, check if any c’s left
 • If c’s left: reject; if no c’s left: accept
“Multiply” in action:

TM M3 “decides” language D

Confirm
(a,b) pair
one two

Symbol X is an a or c that is gone for good
Symbol y is a b temporarily out of service as you go through all the other b’s

Transducers: generating language

So far our machines accept/reject input

Transduction: Computers transform from input to output

• New TM: given i a’s and j b’s on tape, print out ixj c’s

TM 4: Element distinctiveness

Given a list of strings over \{0,1\}, separated by #, accept if all strings are different:

Example: 01101#1011#00010

TM 4 solution

1. Place mark on top of left-most symbol. If it is blank: accept; if it is #: continue, otherwise: reject
2. Scan right to next # and place mark on it. If none encountered and reach blank: accept
3. Zig-zag to compare strings to right of each marked #
4. Move right-most marked # to the right. If no more #: move left-most # to its right and the right-most # to the right of the new first marked #. If no # available for second marked #: accept
5. Go to step 3
Decidability

How do we know decidable?
• Simplify problem at each step toward goal
• Can prove formally – number of remaining symbols at each step

Showing language is Turing recognizable but not decidable is harder

Many equivalent variants of TM

• TM that can “stay put” on tape for a given transition
• TM with multiple tapes
• TM with non-deterministic transitions

Can select convenient alternative for current problem

MultiTape TM

• Each tape has own ReadWrite Head
• Initially tape 1 has input string, all other tapes blank
• Transition does read/write on all heads at once

Equivalence of SingleTape and MultiTape TM

Convert k tape TM M to single tape TM S
• Contents of M's tapes separated by # on S's tape
• Mark current location on each tape

• Read stage: sweep through all k tapes to check input
• Write stage: sweep through all k tapes to write output and update marker (read head) locations

• Head location out of range?
 • Add new position to relevant tape, shift all other characters to right
Equivalence of Deterministic and Nondeterministic TMs

• Try all possible non-deterministic branches – breadth first search
• DTM accepts if NTM accepts
• Can use three tapes: 1 for input, 1 for current branch, 1 to track tree position

Enumerators

Enumerator E is TM with printer attached
• TM can send strings to be output by printer
• Input tape starts blank
• Language enumerated by E is collection of strings printed
• E may print infinitely

Theorem: A language is Turing-recognizable iff some enumerator enumerates it

Common themes in TM variants

• Unlimited access to unlimited memory
• Finite work performed at each step

Note, all programming languages are equivalent
• Can write compiler for C++ in Java

An Algorithm

is a collection of simple instructions for carrying out some task
Hilbert’s Problems

In 1900, David Hilbert proposed 23 mathematical problems

Problem #10
• Devise algorithm to determine if a polynomial has an integral root.
 • Example: $6x^3yz^2 + 3xy^2 - x^3 - 10$ has root $x=5, y=3, z=0$

 General algorithm for Problem 10 does not exist!

Church-Turing Thesis

• Intuition of thesis: algorithm == corresponding Turing machine

• Algorithm described by TM also can be describe by λ-calculus (devised by Alonzo Church)

Hilbert’s 10th problem

Is language D decidable, where $D = \{ p \mid p$ is polynomial with integral root$\}$

Devise procedure:
• Try all ints, starting at 0: $x=0, 1, -1, 2, -2, 3, -3, \ldots$
 • You may never terminate – so not decidable

Exception: univariate case for root is decidable

Levels of description

For FA and PDA
• Formal or informal description of machine operation

For TM
• Formal or informal description of machine operation
 • OR just describe algorithm
 • Assume TM confirms input follows proper tape string format