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JMH 332

“Turing recognizable” vs. “Decidable”

Language is Turing recognizable if some Turing machine recognizes it

• Also called “recursively enumerable”

Machine that halts on all inputs is a decider. A decider that recognizes 
language L is said to decide language L

Language is Turing decidable, or just decidable, if some Turing machine 
decides it
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Not all problems can be solved

•Good to know when you might not find an answer

•Get perspective on limits of computation
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Decidable problems for regular languages

• Does DFA D accept string s?

• Is L(D) of DFA empty?

• Are two DFAs D1 and D2 equivalent?

Specify DFA on input TM, 
determine control algorithm to run DFA specified on tape
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Arbitrary DFA D accepts string w

Language: ADFA={(D,w) | D is DFA that accepts w}

Theorem: ADFA is decidable

Proof idea:

• Define machine M that simulates D on w

• If simulation ends in an accept, accept; else, reject

Note: control states in M cannot be states in D 

M needs to run arbitrary D

~StartQ#AcceptQ#𝛿#CurrentState#w~
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ADFA decider Proof Outline

DFA D described as string: 5-tuple

Use marks on tape to track 

• current state in simulated D

• current symbol read from w

Implement transition function of D for current D state and 
input w

• D’s transition δ is different from TM M’s transition δ
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Arbitrary DFA D accepts no strings

EDFA={ D | D is DFA with L(D)={} } is decidable language

Proof idea:

• Is there any way to reach accept from start?

• Think of graph-marking

Proof

• Mark start state of DFA D

• Repeat until no new states
• Mark any state that past-marked states transition to

• If an accept state is marked, REJECT; else, accept 7

Two DFAs are equivalent

EQDFA = {(A,B) | A and B are DFAs and L(A)=L(B)}  is decidable language

Proof idea:

• Construct new DFA C from A and B; C accepts only strings accepted by 
either A or B, but not both

• Check if C’s language is empty (last slide)
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ACFG is decidable – Proof

For CFG G and string w, determine if G generates w

Idea 1: Simulate G to go through all derivations

• May never terminate

Idea 2: Note |w|=n; 2n-1 steps from CNF rules to each string
Produce all words of lengths n

• Breadth-first search of finite depth is fixed
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BCFG is a decidable language

• For CFG G, determine if there is any terminal string generated by G

• Mark all variables that generate terminals

• Repeated loop:

• Mark all variables that have previously-marked variables on its rules 
right sides

• If mark S, ACCEPT; otherwise reject S -> AB
A -> An | x
B -> yB | d
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EQCFG is not a decidable language

• Regular expressions closed under complement and 
intersection

• CFLs not closed under complement and intersection

• We will prove non-decidable languages later
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The Halting Problem

Key theorem to theory of computation
Addressing unsolvable problems

Unsolvable: Software verification

• For arbitrary computer program P and precise specification 
of program’s behavior S, determine if P fulfills S
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Halting Problem specified

ATM = {(M,w) | M is a TM and M accepts w}

• If M loops forever on w, our TM for ATM must reject w

• This problem is Turing recognizable, but not decidable!
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Detour: Cantor diagonalization

Comparing sizes of two infinite sets

• What is larger: set of even positive integers or set of all strings 
in (0U1)*

Diagonalization: two sets have same size if each element of set A 
can be compared with one element of set B

From CISC 1400: Can you define bijection from set A to set B?
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Example pairing

N = {1,2,3,4,…} and E={2,4,6,8,…}

• N and E have “same size” because there exists bijection from 
N to E

• f(x)=2x

Set is countable if either it is finite or if it has same size as N
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Q is countable

1/1 1/2 1/3 1/4 1/5 1/6

2/1 2/2 2/3 2/4 2/5 2/6

3/1 3/2 3/3 3/4 3/5 3/6

4/1 4/2 4/3 4/4 4/5 4/6

5/1 5/2 5/3 5/4 5/5 5/6

6/1 6/2 6/3 6/4 6/5 6/6

Let Q = {m/n: m,n ∈ N}, positive rational numbers

Follow diagonal, skipping redundant values
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Concatenating 
infinite set of finite 
lists produces 
countable list

Take countable 
steps along 
diagonal line to 
reach each number 
in Q
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Real numbers are uncountable

Real numbers have infinite number of decimal places

Proving uncountability

• Presume we have a list of n real numbers

• Generate new real number x not in current list
• Pick ith decimal value of x to be different from ith decimal value 

of element i in list of real numbers

• At end, x will not be in list

R(1) 1.532532

R(2) 0.352144

R(3) 5.244525

R(4) 9.327431

R(5) 5.366324

R(6) 4.459322

⋮ ⋮

x 3.646311
17

Uncountability implications

There are uncountably many languages

There are countably many Turing machines

Some languages are not Turing recognizable
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“There are countably many Turing machines”

Each TM is captured by finite string <M>∈ Σ∗

• Σ∗ is countable – add number of strings of length 0, length 1, 
length 2, … (like Q)
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“There are uncountably many languages”

Represent L as binary sequence

• 1 for each accepted string, 0 for each reject string

• Infinite number of strings – infinite sequence of 0/1s

• Set of possible binary sequences is uncountable (like R)

“Some languages are not Turing decidable”

Set of TMs is countable

Set of Languages is uncountable

Each TM has one language

Some languages not recognized by any TM

20
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Back to the Halting Problem

ATM={<M,w> | M is a TM and accepts w}

• Proof by diagonalization

• Proof by contradiction

21

Diagonalization

22

<M1> <M2> <M3> <M4> … <D>

M1 Acc Rej Rej Acc … Acc

M2 Rej Rej Acc Rej … Rej

M3 Acc Rej Acc Acc … Acc

M4 Rej Acc Rej Acc … Rej

⋮ ⋮ ⋮ ⋮ ⋮

D Rej Acc Rej Rej …

Contradiction

Assume ATM is decidable

H decides ATM

• Input <M,w> causes H to accept if M accepts w, 
otherwise H rejects

Define a TM D that calls H on <M,<M>>, then outputs opposite 
answer to H

• D rejects if M accepts <M>; D accepts if M does not accept <M>

Run D on itself

• D(<D>) = accept if D does not accept <D>; reject if D accepts <D>

Contradiction!
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Implications

ATM={(M,w) | M is a TM and M accepts W} is not decidable

Some algorithms are decidable

ATM is Turing recognizable – just similar M on machine

24
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Co-Turing Recognizable

Language is co-Turing recognizable if it is the complement of a 
Turing-recognizable language

Theorem: Language is decidable if it is Turing-recognizable and 
co-Turing recognizable

Thus, for any undecidable language L, either L or L’ is not 
Turing-recognizable

• Is ATM’ Turing-recognizable?
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Reducibility

If A reduces to B, solution to B will solve A

Example: A: Navigate NYC B: Reading a map

If A reduces to B

• A is no harder than B

• A could be easier than B
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Reduction and decidability

If A is reducable to B and B is decidable

• A is decidable

If A is reducible to B and A is undecidable

• B must be undecidable
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HALTTM is undecidable

We can reduce ATM (TM accepts w) to HALTTM (TM halts on w)

ATM is undecidable, this HALTTM is undecidable

Proof by contradiction:

• Assume HALTTM is decidable – TM R

• Use R to construct TM S to decide ATM

• S definition:
• If R does not halt for <M,w>, reject w
• If R does halt, simulate M on w
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