1. Consider the state diagram for the following DFAs. For each, answer the following questions:
(1) What state is reached by the input: $w=00110$?
(2) What is the transition function?
(3) What is the language recognized?

M1:

(1) $q_{3} \quad\left(q_{0}(0)->q_{3}(0)->q_{4}(1)->q_{3}(1)->q_{4}(0)->q_{3}\right)$
(2)

	0	1
q_{0}	q_{3}	q_{1}
q_{1}	q_{2}	q_{2}
q_{2}	q_{1}	q_{1}
q_{3}	q_{4}	q_{4}
q_{4}	q_{3}	q_{3}

(3) $\{w \mid w$ is 0 followed by odd number of digits or w is 1 followed by even number of digits\} $\left\{1((0 \cup 1)(0 \cup 1))^{*} \cup 0(0 \cup 1)((0 \cup 1)(0 \cup 1))^{*}\right\}$

M2:

M3:

2. Define a machine to recognize the following languages in the alphabet $\Sigma=\{1,2,3\}$
(5 points)
L4=\{w | the product of input symbols is even\} E.g., 111->1x1x1=1 is odd-reject, $233->2 \times 3 \times 3=18$ is even-accept

L5=\{w | numbers entered in non-decreasing order\} Examples: 112223, 122333

L6=\{w | first two symbols are identical\} Examples: 001213, 333212, 3310013
3. Prove the following languages are regular, using the alphabet $\Sigma=\{a, b, c\}$:

L7=\{w | w contains an odd number of b's $\}$

L8=\{w | w contains the sequence bcb\} (Examples: aabbbcbb or ccbcba)

L9=\{w | w does not have three a's in a row\}
Construct a DFA that recognizes three a's in a row, then flip the accept and reject states.

4. Consider the following NFAs. For each, answer:
(1) what state(s) will be reached by the input: 0011
(2) provide a regular expression to describe the recognized language
(3) For N11 and N12, convert NFA to DFA

N10:

N11:

(1) $q_{2} \quad q_{0}(0)->q_{1}(0)->q_{0}(1)->q_{1}(1)->q_{2}$
(2) (OU1)(0(OU1)) ${ }^{*} \mathbf{1} \quad$ or alternatively: $\boldsymbol{\Sigma}(\mathbf{0 \Sigma})^{*} \mathbf{1}$
(3)

N12:

5. For each regular expression using $\Sigma=\{\mathrm{a}, \mathrm{b}\}$:
(1) Provide three example words.
(2) Convert these regular expressions to a DFA or NFA L13=\{ab* ${ }^{*}$ ba) $\left.{ }^{*}\right\}$
(1) a, ababa, abbb, abbbaba
(2)


```
L14={(a U b)ba*}
L15={(bb)* U (aa)*}
```

6. What is the minimum pumping length for each of these languages, showing these languages are regular? We use the alphabet $\Sigma=\{0,1,2\}$

L16=\{00(0 $\left.\cup 1)^{*} 12\right\}$
$\mathrm{p}=5$: 00012 or 00112 are the smallest strings you can pump
$\mathrm{L} 17=\left\{0(22)^{*} 10\right\}$

L18=\{111(202)*210\}

If pumping length is $p=5$, how would you break up string w into x, y, and z for languages L below?

L19 $=\left\{20(11)^{*} 001\right\}, \quad \mathbf{w}=201111001$

L20=\{ (121)*001 \} w=121001
$\mathrm{x}=\varepsilon \quad \mathrm{y}=121 \quad \mathrm{z}=001$
7. Consider the language $L 21=\left\{01(101)^{*} 11\right\}$, what is the error in each of the following "pumping lemma" arguments?

Argument 1: Let us take $\mathbf{w = 0 1 1 1}, \mathrm{w} \in \mathrm{L} 21$. We cannot divide $\mathbf{w = x y z}$ such that $\mathrm{xy}^{\mathrm{i}} \mathrm{z} \in \mathrm{L} 21, \mathrm{i} \geq 0$. For example, if $\mathrm{x}=0, \mathrm{y}=11$, and $\mathrm{z}=1, \mathrm{xy}^{2} \mathrm{z}=011111 \notin \mathrm{~L} 21$. Therefore, $\mathbf{L 2 1}$ is not regular.

Argument 2: Let us take $\mathbf{w = 0 1 1 0 1 1 0 1 1 1 , ~} \mathbf{w} \in \operatorname{L21}$. If we divide $\mathbf{w = x y z}$ as follows: $x=0110110, y=11, z=1$, we cannot repeat y such that $x{ }^{i} z \in L 21, i \geq 0$. For example, if $x^{2} z=011011011111 \notin \mathbf{L 2 1}$. Therefore, L 21 is not regular.

We divided w improperly to allow pumping. There exist other divisions of w that are pumpable, such as: $x=01, y=101, z=10111$
8. Prove these languages are not regular.
$\mathrm{L} 24=\left\{0^{n} 1^{2 n} 0^{3 n} \mid n>0\right\}$

L25 $=\left\{1^{1^{3}} \mid n>0\right\}$
9. For each of the following grammars, list three strings produced by the grammar

G26:

S-> AB | BA
$A->x A y \mid \varepsilon$
$B->B z B \mid y$

G27:
S -> A | AA
A -> 00 | 11

G28:
A -> 11A00 | ε

Examples: $\boldsymbol{\varepsilon}, 1100,11110000,111111000000$
10. Provide the languages described by two of the grammars:

G27 (from above)

G28 (from above)
$\mathrm{L}=\left\{(11)^{\mathrm{n}}(\mathbf{0 0})^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$
10. Provide a grammar to produce the following languages
$\mathrm{L} 32=\left\{0^{n}(11)^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$

L33 $=\left\{01^{*} 00^{*}\right\}$
Think of a standard DFA and convert from there
G33:
S -> OR ${ }_{1}$
$R_{1} \rightarrow R_{1} \mid O R_{2}$
$\mathrm{R}_{\mathbf{2}} \rightarrow \mathrm{OR}_{\mathbf{2}} \mid \varepsilon$

L34 $=\left\{\mathbf{w} \mid \mathbf{w}=\mathbf{w}^{\text {Reverse }}\right\} \quad$ Examples: 00100, 10101, 1111
11. Convert the following grammars to Chomsky Normal Form

G29:

S -> xAy | BA
$A \rightarrow z \mid A z A$
$B->y B \mid \varepsilon$

G30:
S-> BAB | ABA
$A->y \mid z$
$B \rightarrow x|A A| \varepsilon$

Remove ε
$S->B A B|A B A| A B|B A| A \mid A A$
A ->y | z
$B->x \mid A A$

Remove unit S->A
$S \rightarrow B A B|A B A| A B|B A| y|z| A A$
A -> y | z
$B->x \mid A A$

Convert 3^{+}variable rules to chain of 2-variable rules
S->BC|AD|AB|BA|y|z|AA
$C \rightarrow A B$
D -> BA
A -> y | z
$B->x \mid A A$

G31:

S-> ByBy
B $->x B x \mid \varepsilon$

