Hidden Markov Models

CISC 5800
Professor Daniel Leeds

Representing sequence data

- Spoken language
- DNA sequences
- Daily stock values

Example: spoken language

F?r plu? fi?e is nine
- Between F and r expect a vowel: “aw”, “ee”, “ah”; NOT “oh”, “uh”
- At end of “plu” expect consonant: “g”, “m”, “s”; NOT “d”, “p”

Markov Models

Start with:
- n states: $s_1, ..., s_n$
- Probability of initial start states: $\Pi_1, ..., \Pi_n$
- Probability of transition between states: $A_{i,j} = P(q_t = s_j | q_{t-1} = s_i)$

A dice-y example

- Two colored die

What is the probability we start at s_A? 0.3

What is the probability we have the sequence of die choices: s_A, s_A, s_A, s_A? $0.3 \times 0.8 = 0.24$

What is the probability we have the sequence of die choices: s_B, s_A, s_B, s_A? $0.7 \times 0.2 \times 0.2 \times 0.2 = 0.0056$
A dice-y example

- What is the probability we have the die choices s_b at time $t=5$.

$$\Pi_A = 0.3, \Pi_B = 0.7$$

- Dynamic programming: find answer for q_t, then compute q_{t+1}.

State	Time
	t_1
s_A	0.3
s_B	0.7

$$p_t(i) = \sum_j p(q_t = s_j | q_{t-1} = s_i) p_{t-1}(j)$$

$$p_t(i) = P(q_t = s_i) \quad \text{-- Probability state } i \text{ at time } t$$

Hidden Markov Models

- Actual state q “hidden”
- State produces visible data o: $\phi_{i,j} = P(o_t = x_i | q_t = s_j)$
- Compute

$$P(O, Q | \theta) = P(q_1 | \pi) \prod_{t=2}^{T} p(q_t | q_{t-1}, A) \prod_{t=1}^{T} p(o_t | q_t, \phi)$$

Probability observe value x_i when state is s_j.

Intuition – balance transition and emission probabilities

Deducing die based on observed “emissions”

Each color is biased

| α | $P(o | s_A)$ | $P(o | s_B)$ |
|---------|-------------|-------------|
| 1 | 0.3 | 0.1 |
| 2 | 0.2 | 0.2 |
| 3 | 0.2 | 0.2 |
| 4 | 0.1 | 0.1 |
| 5 | 0.1 | 0.1 |
| 6 | 0.1 | 0.1 |

Observed numbers: 554565254556 – the 2 is probably from s_B

Observed numbers: 554565213321 – the 2 is probably from s_A

Deducing die based on observed “emissions”

Each color is biased

| α | $P(o | s_A)$ | $P(o | s_B)$ |
|---------|-------------|-------------|
| 1 | 0.3 | 0.1 |
| 2 | 0.2 | 0.2 |
| 3 | 0.2 | 0.2 |
| 4 | 0.1 | 0.1 |
| 5 | 0.1 | 0.1 |
| 6 | 0.1 | 0.1 |

- We see: 5
 What is probability of $o=5$, $q=B$ (blue)

$$\Pi_B \phi_{5,B} = 0.7 \times 0.2 = 0.14$$

- We see: 5, 3
 What is probability of $o=5,3$, $q=B, B$?

$$\Pi_B \phi_{5,B} A_{B,B} \phi_{3,B} = 0.7 \times 0.2 \times 0.8 \times 0.1 = 0.0112$$
Goal: calculate most likely states given observable data

Define and use $\delta_t(i)$

$\delta_t(i) = \max_{q_1 \cdots q_{t-1}} p(q_1 \cdots q_{t-1} \land q_t = s_i \land O_1 \cdots O_t)$

$\delta_t(i)$: max possible value of $P(q_1, \ldots, q_t, o_1, \ldots, o_t)$ given we insist $q_t = s_i$

Find the most likely path from q_1 to q_t that

- $q_t = s_i$
- Outputs are o_1, \ldots, o_t

Viterbi algorithm: bigger picture

Compute all $\delta_t(i)$'s

- At time $t=1$ compute $\delta_1(i)$ for every state i
- At time $t=2$ compute $\delta_2(i)$ for every state i (based on $\delta_1(i)$ values)
- ... At time $t=T$ compute $\delta_T(i)$ for every state i (based on $\delta_{T-1}(i)$ values)

Find states going from $t=T$ back to $t=1$ to lead to max $\delta_T(i)$

- Now find state j that gives maximum value for $\delta_T(j)$
- Find state k at time $T-1$ used to maximize $\delta_T(j)$
- ...
- Find state z at time 1 used to maximize $\delta_2(y)$

Viterbi algorithm: $\delta_t(i)$

$\delta_1(i) = \Pi_1 P(o_1 \mid q_1 = s_i) = \Pi_1 \phi_{o_1,i}$

$\delta_t(i) = P(o_t \mid q_t = s_i) \max_j \delta_{t-1}(j) P(q_t = s_i \mid q_{t-1} = s_j) = \phi_{o_t,i} \max_j \delta_{t-1}(j) A_{i,j}$

$P(Q^* \mid O) = \arg\max_Q P(Q \mid O) = \arg\max_i \delta_T(i)$

Viterbi in action: observe “5, 1”

$\Pi_A = 0.3, \Pi_B = 0.7$

<table>
<thead>
<tr>
<th></th>
<th>$P(o \mid s_A)$</th>
<th>$P(o \mid s_B)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.3</td>
<td>.1</td>
</tr>
<tr>
<td>2</td>
<td>.2</td>
<td>.1</td>
</tr>
<tr>
<td>3</td>
<td>.2</td>
<td>.1</td>
</tr>
<tr>
<td>4</td>
<td>.1</td>
<td>.2</td>
</tr>
<tr>
<td>5</td>
<td>.1</td>
<td>.2</td>
</tr>
<tr>
<td>6</td>
<td>.1</td>
<td>.3</td>
</tr>
</tbody>
</table>

$\delta_2(A):$

$\delta_2(B):$

<table>
<thead>
<tr>
<th></th>
<th>$t=1$ ($o_1=5$)</th>
<th>$t=2$ ($o_2=1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q_1=s_A$</td>
<td>.3x.1 = .03</td>
<td>$q_1=s_B$</td>
</tr>
</tbody>
</table>
Parameters in HMM

Initial probabilities: \(\pi_i \)

Transition probabilities \(A_{i,j} \)

Emission probabilities \(\phi_{i,j} \)

How do we learn these values?

Learning HMM parameters: \(\pi_i \)

First, assume we know the states

Compute MLE for each parameter

\[
\pi^* = \arg \max_{\pi} \prod_{k=1}^{T} \pi(q_1) \prod_{t=2}^{T} p(q_t | q_{t-1}) \prod_{t=1}^{T} p(o_t | q_t, \phi)
\]

\[
\pi_A = \frac{\#D(q_1 = s_A)}{\#D}
\]

Note: we can add +1 to numerator (and number of states to denominator) to prevent \(\pi_A = 0 \)

\[
\pi_A = \frac{\#D(q_1 = s_A) + 1}{\#D + |Q|}
\]

Learning HMM parameters: \(A_{i,j} \)

Compute MLE for each parameter

\[
A^* = \arg \max_{A} \prod_{k} \pi(q_1) \prod_{t=2}^{T} p(q_t | q_{t-1}) \prod_{t=1}^{T} p(o_t | q_t, \phi)
\]

\[
A_{i,j} = \frac{\#D(\{q_t = s_i \land q_{t-1} = s_j\})}{\#D(\{q_{t-1} = s_j\})}
\]

Learning HMM parameters: \(\phi_{i,j} \)

Compute MLE for each parameter

\[
\phi^* = \arg \max_{\phi} \prod_{k} \pi(q_1) \prod_{t=2}^{T} p(q_t | q_{t-1}) \prod_{t=1}^{T} p(o_t | q_t, \phi)
\]

\[
\phi_{i,j} = \frac{\#D(o_t = i, q_t = s_j)}{\#D(q_t = s_j)}
\]

First, assume we know the states

Learning HMM parameters: \(x^1: A,B,A,A,B \)

Learning HMM parameters: \(x^2: B,B,B,A,A \)

Learning HMM parameters: \(x^3: A,A,B,A,B \)

Learning HMM parameters: \(x^4: A,B,A,A,B \)

Learning HMM parameters: \(x^5: B,B,B,A,A \)

Learning HMM parameters: \(x^6: A,A,B,A,B \)

Learning HMM parameters: \(x^7: A,B,A,A,B \)

Learning HMM parameters: \(x^8: B,B,B,A,A \)

Learning HMM parameters: \(x^9: A,A,B,A,B \)

Learning HMM parameters: \(x^{10}: A,B,A,A,B \)

Learning HMM parameters: \(x^{11}: B,B,B,A,A \)

Learning HMM parameters: \(x^{12}: A,A,B,A,B \)

Learning HMM parameters: \(x^{13}: A,B,A,A,B \)

Learning HMM parameters: \(x^{14}: B,B,B,A,A \)

Learning HMM parameters: \(x^{15}: A,A,B,A,B \)

Learning HMM parameters: \(x^{16}: A,B,A,A,B \)

Learning HMM parameters: \(x^{17}: B,B,B,A,A \)

Learning HMM parameters: \(x^{18}: A,A,B,A,B \)

Learning HMM parameters: \(x^{19}: A,B,A,A,B \)

Learning HMM parameters: \(x^{20}: B,B,B,A,A \)

Learning HMM parameters: \(x^{21}: A,A,B,A,B \)

Learning HMM parameters: \(x^{22}: A,B,A,A,B \)

Learning HMM parameters: \(x^{23}: B,B,B,A,A \)

Learning HMM parameters: \(x^{24}: A,A,B,A,B \)
Challenges in HMM learning

Learning parameters (π, A, ϕ) with known states is not too hard

BUT usually states are unknown

If we had the parameters and the observations, we could figure out the states:

$$Viterbi \ P(Q^* | O) = \arg\max_Q P(Q | O)$$

Expectation-Maximization, or “EM”

Problem: Uncertain of y^i (class), uncertain of θ^i (parameters)

Solution: Guess y^i, deduce θ^i, re-compute y^i, re-compute θ^i ... etc.

OR: Guess θ^i, deduce y^i, re-compute θ^i, re-compute y^i

Will converge to a solution

E step: Fill in expected values for missing labels y

M step: Regular MLE for θ given known and filled-in variables

Also useful when there are holes in your data

Computing states q_t

Instead of picking one state: $q_t=s_p$ find $P(q_t=s_p|o)$

$$P(q_t = s_i | o_1, ..., o_T) = \frac{\alpha_t(i) \beta_t(i)}{\sum_j \alpha_t(j) \beta_t(j)}$$

Forward probability: $\alpha_t(i) = P(o_1 ... o_t \land q_t = s_i)$

Backward probability: $\beta_t(i) = P(o_{t+1} ... o_T | q_t = s_i)$

Details of forward probability

Forward probability: $\alpha_t(i) = P(o_1 ... o_t \land q_t = s_i)$

$$\alpha_1(i) = \phi_{o_1} \pi_i = P(o_1 | q_1 = s_i) P(q_1 = s_i)$$

$$\alpha_t(i) = \phi_{o_t} \sum_j A_{i,j} \alpha_{t-1}(j)$$

$$\alpha_t(i) = P(o_t | q_t = s_i) \sum_j P(q_t = s_i | q_{t-1} = s_j) \alpha_{t-1}(j)$$

Note: We presume we know number of possible class labels y (or states q), we just don’t know which state occurs at which time
Details of backward probability

Backward probability:

\[\beta_t(i) = P(o_{t+1} \ldots o_T | q_t = s_i) \]

\[\beta_t(i) = \sum_j P(q_{t+1} = s_j | q_t = s_i) P(o_{t+1} | q_{t+1} = s_j) \beta_{t+1}(j) \]

Final \(\beta \):

\[\beta_{T-1}(i) = \sum_j A_{j,i} \phi_{o_{T-1},j} \]

\[= P(q_T = s_j | q_T = s_i) P(o_T | q_T = s_j) \]

E-step: State probabilities

One state:

\[P(q_t = s_i | o_1, \ldots, o_T) = \frac{\alpha_t(i) \beta_t(i)}{\sum_j \alpha_t(j) \beta_t(j)} = S_t(i) \]

Two states in a row:

\[P(q_t = s_j, q_{t+1} = s_i | o_1, \ldots, o_T) = \frac{\alpha_t(j) A_{i,j} \phi_{o_{t+1},i} \beta_{t+1}(i)}{\sum_f \sum_g \alpha_t(g) A_{f,g} \phi_{o_{t+1},f} \beta_{t+1}(f)} = S_t(i, j) \]

Recall: when states known

\[\pi_A = \frac{\#D(q_1 = s_A)}{\#D} \]

\[A_{i,j} = \frac{\#D(q_t = s_i, q_{t-1} = s_j)}{\#D} \]

\[\phi_{i,j} = \frac{\#D(o_t = i)}{\#D(q_t = s_j)} \]

M-step

\[A_{i,j} = \frac{\sum_t S_t(i,j)}{\sum_t S_t(j)} \]

\[\phi_{i,j} = \frac{\sum_t |o_t = i \land q_t = s_j|}{\sum_t |q_t = s_j|} \]

\[\pi_i = S_1(i) \]

Known states:

* \(\pi_A = \frac{\#D(q_1 = s_A)}{\#D} \)

* \(A_{i,j} = \frac{\#D(q_t = s_i, q_{t-1} = s_j)}{\#D(q_{t-1} = s_j)} \)

* \(\phi_{i,j} = \frac{\#D(o_t = i \land q_t = s_j)}{\#D(q_t = s_j)} \)
Review of HMMs in action

For classification, find highest probability class given features

Features for one sound:
* $[q_1, o_1, q_2, o_2, ..., q_T, o_T]$

Conclude word:

Generates states: