1. Presume we have learned a linear separator \mathbf{w} and b for logistic classification:

$$\mathbf{w} = \begin{bmatrix} -2 \\ 0 \\ 3 \\ 1 \\ 0 \end{bmatrix} \quad \text{and} \quad b = 5.$$

We also will use the sigmoid function.

(a) What class (0 or 1) is assigned to the following data points?

$$\mathbf{x}^1 = \begin{bmatrix} 3 \\ 2 \\ 0 \\ 4 \\ -2 \end{bmatrix} \quad \Rightarrow \quad 1$$

$$\mathbf{x}^2 = \begin{bmatrix} 1 \\ 0 \\ -3 \\ 4 \\ 0 \end{bmatrix} \quad \Rightarrow \quad 0$$

(b) We wish to create a four-way classifier now – for classes 0, 1, 2, and 3. How can we use binary linear separators to distinguish between four classes?

One answer is:

Create a linear classifier to separate class 0 from not-0
Create a second linear classifier to separate class 1 from not-1
Create a third linear classifier to separate class 2 from not-2
Any data points in not-0, not-1, and not-2 will be auto-placed in class 3.
2. We wish to perform voice recognition – identifying who is currently speaking based on input audio information. One of three potential people is speaking – Jane, Maria, or Sam. We first classify speech using a maximum likelihood classifier using three features – pitch (sound frequency), speed (words-per-second), and volume. For each feature:
- the straight line indicates the distribution for Jane
- the small-dotted line indicates the distribution for Maria
- the big-dotted line indicates the distribution for Sam.

Presume the prior probabilities
\[P(\text{speaker}=\text{Jane}) = 0.3, \quad P(\text{speaker}=\text{Maria})=0.5, \quad P(\text{speaker}=\text{Sam}) = 0.2 \]

We observe pitch=20, wordRate=0.5, volume = 6

What is the class, based on Posterior probability?

\[
\begin{align*}
\text{Jane: } & \quad 0.3 \times 0.7 \times 1 \times 0 = 0 \\
\text{Maria: } & \quad 0.5 \times 0.6 \times 0.03 \times 0.6 = 0.0054 \\
\text{Sam: } & \quad 0.2 \times 0 \times 2 \times 0.2 = 0
\end{align*}
\]

\textbf{Maria}
3. Presume we instead us another likelihood for duration \(d \) (words-per-sentence). It’s probability function follows the Rayleigh distribution:

\[
P_r(d|\sigma) = \frac{d}{\sigma} e^{-d^2/(2\sigma^2)}
\]

Example resulting shapes are shown to the right.

We wish to classify solely based on this feature. What is the maximum likelihood estimate of parameter \(\sigma \) for class speaker=Maria, to maximize:

\[
L = \prod_{i \in Maria} P_r(d_i|\sigma_{Maria})
\]

(Show your work for partial credit!)

\[
\prod_{i} \frac{d^i}{\sigma} e^{-\frac{d^i^2}{(2\sigma^2)}}
\]

\[
\sum_{i} \left(\log d^i - \log \sigma - \frac{d^i^2}{(2\sigma^2)} \right)
\]

Derivative:

\[
\sum_{i} \left(-\frac{1}{\sigma} + 2 \frac{d^i^2}{(2\sigma^3)} \right) = 0
\]

\[
\sum_{i} \left(\frac{d^i^2}{\sigma^3} \right) = \frac{N}{\sigma}
\]

\[
\sigma = \sqrt{\frac{\sum id^i^2}{N}}
\]
4. (20 points) Presume we have a np array variable \texttt{Data} with 5000 data points (as rows) and 40 features (as columns). (numpy: \texttt{Data.shape} is [5000, 40]). We also have a variable of class labels \texttt{Labels} with 5000 entries (as rows), each either 'A' or 'B', indicating the class for the data point in the corresponding row of \texttt{Data}. Finally, we have a function \texttt{Classify} that takes in a single 40-element row of features and outputs the predicted class label 'A' or 'B'. E.g.: \texttt{Classify(rowVector)} outputs an ‘A’ or a ‘B’

Write code to process the data points in \texttt{Data} and compute the percent correct labels output by the function \texttt{Classify}. Store the percent correct as a decimal between 0.0 and 1.0 in the variable \texttt{percentCorrect}.

One version of answer:

\begin{verbatim}
Count=0
for i in range(len(Data)):
 if Classify(Data[i,:])==Labels(i):
 Count=Count+1;

percentCorrect=Count/5000;
\end{verbatim}