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The State of 2D Robot (x,y,)
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Y Robot Orientation      
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Sensors: Sonar

• Sonar: SOund Navigation And Ranging
Sonar is a method of finding the distance to an object by measuring the time it 

takes for a pulse of sound (usually ultrasound) to make the round trip back to the

transmitter after bouncing off the object (Time of Flight Measurement - TOF). 

At sea level, in air, sound travels at about 344 metres per second (1130 feet per 

second). In practical terms this means 2.5 cm is covered in about 74 microseconds. 



Sonar Issues

Sonar works best when the sensor is parallel to the target.



Sensors: Vision

• Vision is a passive approach to sensing 

• In theory, provides a lot of information about the environment

• In practice, can be difficult to interpret

1/3” Sony CCD Camera

(analog camera)

Produces images of size

640 x 480 x 3 bytes

at video frame rate

Video Frame

Grabber

Digital camera

0         1         2     3      4
0 (r,g,b) (r,g,b) (r,g,b) ……
1 (r,g,b) (r,g,b) …….

……….

http://images.google.com/imgres?imgurl=http://www.everfocus.com.tw/taiwan/eq200.jpg&imgrefurl=http://www.everfocus.com.tw/taiwan/camera.htm&usg=__zedfdGwSWr6WIceXMYnc0JW5qCM=&h=474&w=807&sz=76&hl=en&start=2&um=1&tbnid=OVloMjT0OkRe2M:&tbnh=84&tbnw=143&prev=/images?q=CCD+camera&hl=en&sa=N&um=1
http://images.google.com/imgres?imgurl=http://www.everfocus.com.tw/taiwan/eq200.jpg&imgrefurl=http://www.everfocus.com.tw/taiwan/camera.htm&usg=__zedfdGwSWr6WIceXMYnc0JW5qCM=&h=474&w=807&sz=76&hl=en&start=2&um=1&tbnid=OVloMjT0OkRe2M:&tbnh=84&tbnw=143&prev=/images?q=CCD+camera&hl=en&sa=N&um=1
http://images.google.com/imgres?imgurl=http://www.acroname.com/robotics/parts/R299-MC-433.jpg&imgrefurl=http://www.acroname.com/robotics/parts/R299-MC-433.html&usg=__MOAjOpxxPbKReYDiVq3pQ6hsI3w=&h=320&w=320&sz=24&hl=en&start=9&um=1&tbnid=Alx4NUji9NbHXM:&tbnh=118&tbnw=118&prev=/images?q=firewire+camea&hl=en&um=1
http://images.google.com/imgres?imgurl=http://www.acroname.com/robotics/parts/R299-MC-433.jpg&imgrefurl=http://www.acroname.com/robotics/parts/R299-MC-433.html&usg=__MOAjOpxxPbKReYDiVq3pQ6hsI3w=&h=320&w=320&sz=24&hl=en&start=9&um=1&tbnid=Alx4NUji9NbHXM:&tbnh=118&tbnw=118&prev=/images?q=firewire+camea&hl=en&um=1


Issues With Vision

• Each point on the image (u,v) corresponds to a point in the scene 
(x,y,z)

• But that requires mapping 2D to 3D .. which is an underconstrained
mapping; information is lost.

• Lighting changes dramatically alter an image (but are not changes in 
the elements of the scene)

• Objects may be occluded, hard to recognize, hard to separate from 
other objects, etc.



Sensors: Stereovision - Image(RGB) + Depth!

Color Image       I[u][v]=(r,g,b)
Depth Image     D[u][v]=d 
u=0..639, v=0..479
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Example Stereo Information

(a) (b) (c)

Stereo camera image            Pseudocolor disparity image            Point Cloud Image

A point cloud is a set of (x,y,z) points 
that may include color information (r,g,b)



Sensors: Kinect RGB-D sensing 



Other RGB-D sensing methods?

• Many similar sensors: 
• Swiss Ranger SR4000, 

• Asus Xtion PRO, 

• PMD CamCube, 

• Softkinectic Depthsense

• Could use Camera + Distance sensor combinations, 
• e.g. Camera + Laser Ranger
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Wayfinding; 
Example: for Search and Rescue

• Where am I in this building?

• Can I construct an ad-hoc map as I go?

• Can I recognize when I return to the same location I have been in?

15



Navigation and Motion Planning

•Construct Maps from Sensor Data

•Localization of robot on Map

•Planning motions of the robot



Spatial Occupancy Maps

• Two dimensional grid Morevec & Elfes
1985, Elfes 1987

• Each cell describes the occupancy of a 
corresponding area

• Probabilistic occupancy map: each cell 
contains the probability of that area 
being occupied



Sonar Cone on Occupancy Grid

Four regions:

a. Is probably occupied

b. Is probably empty

c. Status is unknown

d. Outside the beamc

a

b

d
Combined region a and b

Sonar probability model

(Moravec & Elfes 1984)



Example Mapping
(Fox, Baumgard & Thrun 1999)



Localization

• Where exactly is the robot with respect to the map?

• Why? – because odometry is error-prone even when corrected by 
gyroscopes, inclinometers and other sensors

• Probabilistic approach: What is the probability that the robot is at 
position x given the motions and sensing so far



Example from FNT’99



SLAM

• SLAM
• Simultaneous Localization And Mapping

• Figure out where we are and what our world looks like at the same time

• Localization
• Where are we?

• Position error accumulates with movement

• Mapping
• What does the environment look like?

• Sensor error (not independent of position error)

LOOP CLOSURE:
Knowing you are at a previously visited
spot allows reduction of error



Expectation Maximization (EM)

• Find most likely map (and poses)

• Expectation step (E-step)
• Calculate probabilities of robot poses for current guess of 

map

• Maximization step (M-step)
• Calculate single most likely map for distribution of robot 

poses

• Iterate



Topological representation
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G=(V,E); V={a,..i}; E={{a,b},{a,i},…}

• Represents space as a set of 
vertices and a set of edges

• Represents the connectivity 
between ‘places’

• May or not represent 
geometric details

• May or not contain metric 
information



Pros and Cons

• Can represent arbitrary size spaces

• Can contain metric information 
• on edges (distances between places)

• at nodes (local metric map)

• Can be searched with standard graph search algorithm

• Worst case for metric information: Each place only identified by local 
sensor signature (i.e. visual signature).



The Role of Landmarks

• How to determine when you have ‘closed a loop’  that 
is, returned to a spot visited earlier, in a metric map

• How to determine when you have arrived at a place in 
a topological map

Note: ‘landmark’ is often used to denote any sensory feature stored, 
including edges, lines, regions, etc.

In our usage here, a landmark will be a macro, three-dimensional 
combination of geometry and texture used for navigation. 

This is arguably similar to informal sense of the word landmark.



Why this approach to Landmarks

• Easy to use RGB-D data

• Allow easy (frequent and fast) collaboration between (heterogeneous) 
robot team members to support local map alignment

• Support human-readable annotation of a map

Our approach: Represent a landmark by an abstracted chunk of scene 
geometry and appearance information.
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Prior Work: 
Representing Natural Landmarks

• Visual templates (Belkenius 1998)

• 360o scenes (Pinette 1994, Franz et al 1998, Fiala 2002)

• Select landmarks whose appearance is independent of 
scale and rotation – SIFT features (Se et al 2001)

• Planar quadrangles matched by homography (Hayet et al 2002) 

• Structural relations of line segments (Frommberger 2006)

• Isomap low-dimensional location and image descriptions 
for landmarks (Ramos et al 2007)

• Bag of words representations
(e.g., CLARET)
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Histograms

Histogram:

Let I : PV , value vV of a pixel at location pP; 
a histogram of I, written hI maps equivalence classes B on V to 
the set {0,…,|P|} such that 

hI(b) = 



||

1

P

i

ibbn 
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Histograms & Spatiograms

Histogram:

Let I : PV , value vV of a pixel at location pP; 
a histogram of I, written hI maps equivalence classes B on V to the set {0,…,|P|}
such that 

hI(b)=

Spatiogram:

Adds information about where values occur in the image: hI (b ) =  nb , b , b 





||

1

P

i

ibbn 



Spatiograms

Different visual 
objects



Spatiograms

The same 
visual object
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Terrain Spatiogram (TSG)

• A delta function ib = 1 iff the ith pixel is in the bth equivalence class, 
and its 3D location information is available, 0 otherwise.

• A function d(p) that maps a pixel at position p to its corresponding 3D 
location so that spatial statistics can refer to 3D (geometric) locations.

• Object-centered, cylindrical or rectangular coordinates.



Terrain Spatiogram



Terrain Spatiogram

Video texture,
Pixels with valid
disparity

TSG calculated from stereo data

Monochrome
Disparity map



Another Motivation: 
Fusing Multiple Views

A single TSG that
contains data from
multiple views



TSG = Spatiogram with 3D Spatial Moments

• Collect set of Landmark Images

• Subregion of image with Landmark

• Update histogram using color 
information: bin(p) = r  +  g sb  +  b sb

2

• Update mean using depth 
information

• Update covariance using depth and 
mean

=> Set of h, one for each landmark


 




||

1
||

1

)(
1 P

i

ibiP

j

jb

b pd 






 




||

1
||

1

))()()((
1 P

i

ib

T

bibiP

j

jb

b pdpd 



h (b ) =  nb , b , b  ,  N(b , b)





||

1

P

i

ibbn 



Recognizing a landmark: Comparing TSGs

Normalized similarity (O’Conaire et al 2007)

Where b = 2(2)0.5|b’b|0.25 N(b ; ’b , 2(b+’b))

Step 1: Collect TSG h from current image subregion

Step 2: Identify landmark  from list L of landmark TSG using :
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Mixture of Gaussian (MoG or GMM) TSGs

h(b ) =  nb ,  mb = ((b1 , b1 , b1) , … , ((bm , bm , bm))  
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Need to do clustering
to find mixture members!
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Occlusion 

• Landmark Occlusion is a depth related phenomenon

• A landmark is occluded when an occluding object 
• hides a portion of the landmark 
• as a consequence of being between the sensor and the 

landmark

DM Lyons
Slide 43 of 10

ICRA 2010



(a)     (b) (c)

(d) (e) (f)

• Occluded Landmark left image of stereo pair (a, d); 

• Perspective view of image pixels mapped to absolute depth (b, e); 

• Perspective view of terrain spatiogram with XZ cluster center and 1SD circle (c, f) from 
K-Means clustering

Identifying Occlusion

XZ is ground plane
Y is height

An occlusion will always
have a separate cluster 
center in lower Z than the 
landmark!



Steps in Occlusion Filtering

Unoccluded landmark      TSG before trimming    TSG after trimming outliers 

Candidate (occluded) candidate cluster          TSG trimmed              translated
Landmark                              center                                        to landmark moments       to Z origin



Unoccluded and 
Occluded Landmarks 

(a)        (b)     (c)         (d)        (e)

(1)

(2)

(3)



Results

a b c d e

1 0.434 0.463 0.385 0.416 a

0.483 1 0.417 0.459 0.335 b

0.486 0.351 1 0.545 0.61 c

0.41 0.4 0.533 1 0.449 d

0.485 0.258 0.61 0.486 1 e

Table 1: Confusion Matrix for Landmarks.

11 22 33 12 13

a 1 1 1 0.815 0.485

b 1 1 1 0.828 0.697

c 1 1 1 0.571 0.405

d 1 1 1 0.868 0.632

e 1 1 1 0.835 0.483

Table 2: Direct Normalized Comparisons



Occlusion-Filtered Landmarks

1’2’ 1’3’

1’2’ 

%change

1’3’ 

%change

a 0.905 0.694 11.113 42.86

b 0.893 0.885 7.871 26.92

c 0.632 0.549 10.721 35.628

d 0.917 0.812 5.687 28.574

e 0.914 0.611 9.536 26.455

Table 3: Occlusion Filtered Normalized Comparisons.



Draped Landmarks

14 1'4' 1'4' %change

a 0.727 0.694 -4.53

b 0.83 0.864 4.095

c 0.867 0.92 6.034

d 0.748 0.799 6.738

e 0.623 0.581 -6.701

Table 4: Normalized Comparisons with draped landmarks.

(4)
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Landmark saliency architecture

Objective:
Automatically extract TSG landmarks from RGB-D data based on visual 

saliency and which are similarly salient to humans.

• Saliency consists of three components (Raubell & Winter 2002)
• Visual attraction

• Structural attraction

• Semantic attraction



Visual attraction

• Input is RGB-D images

Ic = { cij = (v1, v2, v3) | i  1..n, j  1..m }

Id = { dij = (x1, x2, x3) | i  1..n, j  1..m }

• Retinal cone responses: Red-
green/Blue-yellow 
(Schoss & Palmer 2009)

• => CIELab color opposition space

• Visual Attraction Module applied to 
Depth and Color images in parallel



Structural Attraction

• Input is Rs(Ic) and Rs(Id)

• Three structural 
attractiveness properties:

• Region area

• Aspect ratio

• Fused attractiveness



Example



Semantic attractiveness

• All the seven settings for masks, thresholds and weights in the visual and structural 
modules ( αv , v , wc ,wd , s , wa ,wr , wv )

• αv : This parameter allows the salience of the input components to be reversed or 
masked

• v : This controls how smooth surfaces need to be to show up as salient. 

• wc ,wd : These two mutually dependent parameters indicate how important spatial 
information is relative to color information. 

• s : This controls how salient a fused region needs to be to appear in the list of regions. 

• wa ,wr ,wv : These three mutually dependent parameters control the relative 
attractiveness of large regions versus small regions, vertical regions (tall) versus 
horizontal (squat) regions and high versus low fused visual attractiveness.  



Experiments

• Pioneer 3-AT, Videre
stereocam (f=6mm), Biclops
PT base.

• Robot followed loop around 
7mx10m blacktop area.

• Stopped at regular distances 
and collected images at 
(80,90,100) looping away 
from blacktop.



Recognition results

• Univariate TSG for each 
LSA candidate (46 in total)

• Filtered to top 3 matches 
per candidate (>0.6); 
leaving 7 landmarks with 3 
poses (21 TSGs).

• 21x21 Confusion matrix
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Comparison with two other approaches



Conclusions

• Terrain Spatiogram Landmark Representation

Represents landmark as abstract chunk of scene texture and geometry

• Discussed:
• Simplifies recognition of occluded landmarks

• Can be automatically selected by robot as it travels

• Has good recognition characteristics

• Did not discuss:
• How to share TSG among robot team members and with people

• How to construct TSG from multiple orientations of same object



Selection and Recognition of 
Landmarks using Terrain Spatiograms
Damian M. Lyons
Fordham University

• A team of robots share 
information about observed 
landmarks

• Terrain spatiograms (tsg) 
combine spatial and image 
landmark data

• Saliency architecture 
autoselects landmarks

• tsg reliably recognizes 
autoselected landmarks

• Improves on SQDIFF & 
histogram approaches

Confusion Matrix for TSG Comparisons

Confusion Matrix for SQDIFF Comparisons

Confusion Matrix for Histo Comparisons


