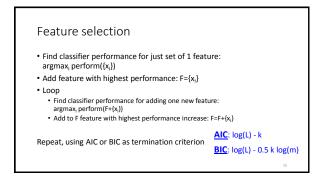
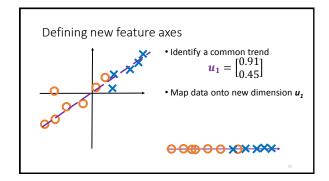
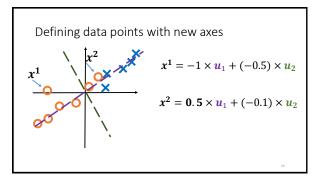

Dimensionality reduction CISC 5800 Professor Daniel Leeds The benefits of extra dimensions

Goal: High Performance, Few Parameters

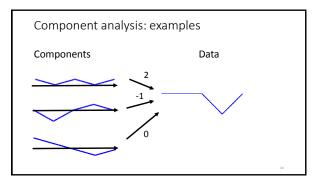

- "Information criterion": performance/parameter trade-off
- Variables to consider:
 - L likelihood of train data after learning
 - k number of parameters (e.g., number of features)
 - m number of points of training data
- Popular information criteria:
 - Akaike information criterion <u>AIC</u>: log(L) k
 - Bayesian information criterion <u>BIC</u>: log(L) 0.5 k log(m)

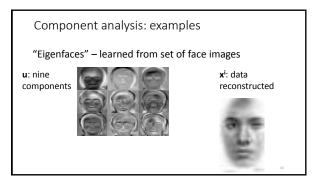

Decreasing parameters

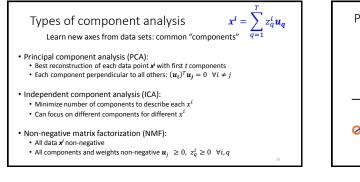

- Force parameter values to 0
 - L1 regularization
 - Support Vector selection
 - Feature selection/removal
- Consolidate feature space
 - Component analysis

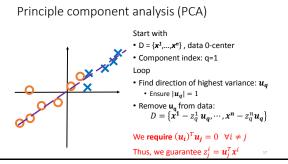
Feature removal Start with feature set: F={x₁, ..., x_k} Find classifier performance with set F: perform(F) Log Find classifier performance for removing feature x₁, x₂, ..., x_k: argmax, perform(F-x₁) Remove feature that causes least decrease in performance: F=F-x₁ Repeat, using AIC or BIC as termination criterion

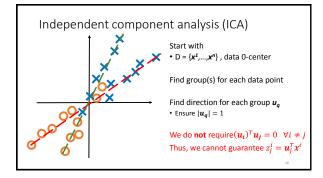
F-{x ₃ } 39 0.03 -41.5 F-{x ₃ ,x ₇₄ } 38 0.005 -41.3			lihood) AIC	
F-{x ₃ ,x ₂₄ } 38 0.005 -41.3	40	0.1	-42.3	
	-{x ₃ } 39	0.03	-41.5	
F-{x, x, x, } 37 0.001 -40.9	-{x ₃ ,x ₂₄ } 38	0.005	-41.3	
1 (N3)N24)N321	-{x ₃ ,x ₂₄ ,x ₃₂ } 37	0.001	-40.9	
F-{x ₃ ,x ₂₄ ,x ₃₂ ,x ₁₅ } 36 0.0001 -41.2	-{x ₃ ,x ₂₄ ,x ₃₂ ,x ₁₅ } 36	0.000	1 -41.2	




Component analysis


Each data point x^i in D can be reconstructed as sum of components u:


$$\cdot x^{\iota} = \sum_{q=1}^{T} z_q^{\iota} u_q$$


 $^{\bullet}z_{q}^{i}$ is weight on \mathbf{q}^{th} component to reconstruct data point \mathbf{x}^{i}

