11/11/2015

Dimensionality reduction

CISC 5800
Professor Daniel Leeds

The benefits of extra dimensions

e o
* Finds existing complex
separations between
X classes
X
X
X

The risks of too-many dimensions
* High dimensions with

kernels over-fit the

X X outlier data

X ignore the outlier data

Training vs. testing

* Training: learn parameters from set of data in each class
« Testing: measure how often classifier correctly identifies new data

* More training reduces classifier error &
* More gradient ascent steps
* More learned feature

error

* Too much training causes
worse testing error — overfitting

training epochs

Goal: High Performance, Few Parameters
 “Information criterion”: performance/parameter trade-off

« Variables to consider:
« L likelihood of train data after learning
* k number of parameters (e.g., number of features)
* m number of points of training data

* Popular information criteria:
* Akaike information criterion AIC: log(L) - k

* Bayesian information criterion BIC: log(L) - 0.5 k log(m)

Decreasing parameters

* Force parameter values to 0
* L1 regularization
* Support Vector selection
* Feature selection/removal

* Consolidate feature space
* Component analysis

11/11/2015

Feature removal

« Start with feature set: F={x,, ..., X}
« Find classifier performance with set F: perform(F)
* Loop

* Find classifier performance for removing feature x,, x,, ..., X:
argmax; perform(F-x,)

* Remove feature that causes least decrease in performance:
F=F-x;
AIC: log(L) - k

Repeat, using AIC or BIC as termination criterion
P & BIC: log(L) - 0.5 k log(m)

AIC testing: log(L)-k

[Features [k (num features) [L (likelihood) _|AIC |
F 40 0.1 423

F-fxs} 39 0.03 415

F-{xa, %05} 38 0.005 -41.3
F-ioXuXs) 37 0.001 40.9 I
F-laXoa s X1s) 36 0.0001 12

Feature selection

* Find classifier performance for just set of 1 feature:
argmayx; perform({x;})

* Add feature with highest performance: F={x;}

* Loop

* Find classifier performance for adding one new feature:
argmax; perform(F+{x})

* Add to F feature with highest performance increase: F=F+{x;}

AIC: log(L) - k
BIC: log(L) - 0.5 k log(m)

Repeat, using AIC or BIC as termination criterion

Defining new feature axes

> *Identify a common trend
/x’a(0.91
uy =

* Map data onto new dimension u,

o¥
fa) 2 X

Defining data points with new axes
2 o
A \\ {QX”} xl=—-1xu +(—05) xu,

x2=0.5xu, +(—0.1) X u,

Component analysis
Each data point x' in D can be reconstructed as sum
of components u:
P T
X' = Xg=12qUq

-zfl is weight on gt component to reconstruct data
point xi

11/11/2015

Component analysis: examples

Components Data

Component analysis: examples

“Eigenfaces” —learned from set of face images

xi: data
reconstructed

u: nine
components

T
i_ i
X —quuq

q=1

Types of component analysis

Learn new axes from data sets: common “components”

* Principal component analysis (PCA):
* Best reconstruction of each data point X' with first t components
« Each component perpendicular to all others: (ui)Tu,- =0 Vi#j

* Independent component analysis (ICA):
+ Minimize number of components to describe each x*
« Can focus on different components for different x*

* Non-negative matrix factorization (NMF):
« All data x' non-negative

* All components and weights non-negative u; >0, zfZ >0 Vi,q

Principle component analysis (PCA)

Start with
* D={x,..,x"}, data O-center

'’
/’} * Component index: g=1
Ox Loop

9/ : ; * Find direction of highest variance: u,

* Ensure |ug| =1
* Remove u, from data:
T
D= {xl = (1) ug, -, 2" — (x“)Tuq}

We require (u;)"u; =0 Vi #j

Thus, we guarantee z/ = u/ x'

Independent component analysis (ICA)
X

Start with
* D= {x!,..x"}, data O-center

*
o X
)%& X Find group(s) for each data point
Crx

Find direction for each group u,
* Ensure Ju,| =1

We do not require(u;)"u; = 0 Vi # |
o é Thus, we cannot guarantee z/ = u] x'

Evaluating components
* Components learned in order of descriptive power

* Compute reconstruction error for all data by using first v components:

error =Y, (Z](x]‘ = Xh=1 aéuq,j)z)

