Hidden Markov Models

CISC 5800
Professor Daniel Leeds

Representing sequence data

- Spoken language
- DNA sequences
- Daily stock values

Example: spoken language
F?r plu? fi?e is nine

- Between F and r expect a vowel: "aw", "ee", "ah"; NOT "oh", "uh"
- At end of "plu" expect consonant: "g", "m", "s"; NOT "d", "p"

Markov Models

Start with:

- n states: $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}}$
- Probability of initial start states: Π_{1}, \ldots, Π_{n}
- Probability of transition between states: $A_{i, j}=P\left(q_{t}=s_{i} \mid q_{t-1}=s_{j}\right)$

A dice-y example
- Two colored die
- What is the probability we start at s_{A} ?
- What is the probability we have the sequence of die choices:
$\mathrm{s}_{\mathrm{B}}, \mathrm{s}_{\mathrm{A}}, \mathrm{s}_{\mathrm{B}}, \mathrm{s}_{\mathrm{A}}$?

Hidden Markov Models

- Actual state q "hidden"
- State produces visible data o: $\phi_{i, j}=P\left(o_{t}=x_{i} \mid q_{t}=s_{j}\right)$
- Compute

$$
P(\boldsymbol{O}, \boldsymbol{Q} \mid \boldsymbol{\theta})=p\left(q_{1} \mid \pi\right) \prod_{t=2}^{T} p\left(q_{t} \mid q_{t-1}, \boldsymbol{A}\right) \prod_{t=1}^{T} p\left(o_{t} \mid q_{t}, \boldsymbol{\phi}\right)
$$

State\Time	t_{1}	t_{2}	t_{3}
$\mathrm{~s}_{\mathrm{A}}$	0.3		
$\mathrm{~s}_{\mathrm{B}}$	0.7		

$$
p_{t}(i)=\sum_{j} p\left(q_{t}=s_{i} \mid q_{t-1}=s_{j}\right) p_{t-1}(j)
$$

Deducing die based on observed "emissions"

- Each color is biased
- A (red) B (blue)

0	$\mathrm{P}\left(\mathrm{o} \mid \mathrm{s}_{\mathrm{A}}\right)$	$\mathrm{P}\left(\mathrm{o} \mid \mathrm{s}_{\mathrm{B}}\right)$
1	.3	.1
2	.2	.1
3	.2	.1
4	.1	.2
5	.1	.2
6	.1	.3

- We see: $5 \quad$ What is probability of $0=5 \mid B$ (blue)
- We see: $5,3 \quad$ What is probability of $0=5,3 \mid B, B$? What is probability of $o=5,3$ and $s=B, B$ What is MOST probable $\boldsymbol{s} \mid \mathbf{o = 5 , 3}$?

Goal: calculate most likely states given observable data

$$
\arg \max _{Q} P(Q \mid O)=\arg \max _{Q} \frac{P(O \mid Q) P(Q)}{P(O)}
$$

- Define and use $\delta_{t}(i)$
$=\arg \max _{Q} P(O \mid Q) P(Q)$

$$
\delta_{t}(i)=\max _{q_{1} \cdots q_{t-1}} p\left(q_{1} \ldots q_{t-1} \wedge q_{t}=s_{i} \wedge O_{1} \ldots O_{t}\right)
$$

- Find the most likely path from q_{1} to q_{t} that - $q_{t}=s_{i}$
- Outputs are o_{1}, \ldots, o_{t}

Viterbi algorithm: $\delta_{t}(i)$

- $\delta_{1}(i)=\Pi_{i} P\left(o_{1} \mid q_{1}=s_{i}\right)=\Pi_{i} \phi_{1, i}$
- $\delta_{t}(i)=\max _{j} \delta_{t-1}(j) P\left(o_{t} \mid q_{t}=s_{i}\right) P\left(q_{t}=s_{i} \mid q_{t-1}=s_{j}\right)=$ $\max _{j} \delta_{t-1}(j) \phi_{t, i} A_{i, j}$
- $P\left(Q^{*} \mid O\right)=\operatorname{argmax}_{Q} P(Q \mid O)$

First, assume we know the states
Learning HMM parameters: π_{i}
x^{1} : A B, A, A, B
Compute MLE for each parameter
$x^{2}: B, B, B, A, A$
$\mathbf{x}^{3}: A A, B, A, B$
$\xrightarrow{A} \begin{gathered}A \\ \vdots\end{gathered}$

$$
\begin{gathered}
\pi^{*}=\underset{\pi}{\operatorname{argmax}} \prod_{k} \pi\left(q_{1}\right) \prod_{t=2}^{T} p\left(q_{t} \mid q_{t-1}\right) \\
\pi_{A}=\frac{\# D\left(q_{1}=s_{A}\right)}{\# D}
\end{gathered}
$$

$\square \vdots$
Compute IV

Parameters in HMM

- Initial probabilities: π_{i}
- Transition probabilities $\mathrm{A}_{\mathrm{i}, \mathrm{j}}$

How do we learn these values?

- Emission probabilities $\phi_{i, j}$

First, assume we know the states Learning HMM parameters: $A_{i, j}$

$$
\begin{array}{cc}
\begin{array}{c}
\mathbf{x}^{1}: \mathrm{A}, \mathrm{~B}, \mathrm{~A}, \mathrm{~A}, \mathrm{~B} \\
\mathbf{x}^{2}: \mathrm{B}, \mathrm{~B}, \mathrm{~B}, \mathrm{~A}, \mathrm{~A} \\
\mathbf{x}^{3}: \mathrm{A}, \mathrm{~A}, \mathrm{~B}, \mathrm{~A}, \mathrm{~B} \\
\vdots
\end{array} & \text { Compute MLE for each parameter } \\
A^{*}=\underset{A}{\operatorname{argmax}} \prod_{k} \pi\left(q_{1}\right) \prod_{t=2}^{T} p\left(q_{t} \mid q_{t-1}\right) \\
& A_{i, j}=\frac{\# D\left(q_{t}=s_{i}, q_{t-1}=s_{j}\right)}{\# D\left(q_{t-1}=s_{j}\right)}
\end{array}
$$

First, assume we know the states Learning HMM parameters: $\phi_{i, j}$
\mathbf{x}^{1} : A,B,A,A,B Compute MLE for each parameter
$\mathbf{o}^{1}: 2,5,3,3,6$
$\mathbf{x}^{2}: B, B, B, A, A$
$\mathbf{o}^{2}: 4,5,1,3,2$
$\mathbf{x}^{3}: A, A, B, A, B$
$\mathbf{o}^{3}: 1,4,5,2,6$

$$
\phi_{i, j}=\frac{\# D\left(o_{t}=i, q_{t}=s_{j}\right)}{\# D\left(q_{t}=s_{j}\right)}
$$

!

Expectation-Maximization, or "EM"

- Problem: Uncertain of y^{i} (class), uncertain of θ^{i} (parameters)
- Solution: Guess y^{i}, deduce θ^{i}, re-compute y^{i}, re-compute $\theta^{i} \ldots$.. etc. OR: Guess θ^{i}, deduce y^{i}, re-compute θ^{i}, re-compute y^{i}

Will converge to a solution

- E step: Fill in expected values for missing variables
- M step: Regular MLE given known and filled-in variables Also useful when there are holes in your data

Details of forward and backward probabilities

Forward probability: $\alpha_{t}(i)=P\left(o_{1} \ldots o_{t} \wedge q_{t}=s_{i}\right)$

$$
\begin{gathered}
\alpha_{1}(i)=\phi_{o_{1}, i} \pi_{i}=P\left(o_{1} \mid q_{1}=s_{i}\right) P\left(q_{1}=s_{i}\right) \\
\alpha_{t}(i)=\phi_{o_{t}, i} \sum_{j} A_{i, j} \alpha_{t-1}(j) \\
\alpha_{t}(i)=P\left(o_{t} \mid q_{t}=s_{i}\right) \sum_{j} P\left(q_{t}=s_{i} \mid q_{t-1}=s_{j}\right) \alpha_{t-1}(j)
\end{gathered}
$$

Backward probability: $\boldsymbol{\beta}_{\boldsymbol{t}}(\boldsymbol{i})=P\left(o_{t+1} \ldots o_{T} \wedge \boldsymbol{q}_{\boldsymbol{t}}=\boldsymbol{s}_{\boldsymbol{i}}\right)$
Final $\beta: \boldsymbol{\beta}_{\boldsymbol{T - 1}}(\boldsymbol{i})$

$$
\beta_{t}(i)=\sum_{j} A_{j, i} \phi_{o_{t+1} j} \beta_{t+1}(j)
$$

$\beta_{T-1}(i)=\sum A_{j, i} \phi_{o_{T-1}, j}$
$=P\left(q_{T}=s_{j} \mid q_{T-1}=s_{i}\right) P\left(o_{T} \mid q_{T}=s_{j}\right)$
$\beta_{t}(i)=\sum_{j} P\left(q_{t+1}=s_{j} \mid q_{t}=s_{i}\right) P\left(o_{t+1} \mid q_{t+1}=s_{j}\right) \beta_{t+1}(j)$

$$
\overleftarrow{j}
$$

Challenges in HMM learning

- Learning parameters (π, A, ϕ) with known states is not too hard
- BUT usually states are unknown
- If we had the parameters and the observations, we could figure out the states: \quad Viterbi $P\left(Q^{*} \mid O\right)=\operatorname{argmax}_{\mathrm{Q}} \mathrm{P}(\mathrm{Q} \mid \mathrm{O})$

Computing states q_{t}

- Instead of picking one state: $\mathrm{q}_{\mathrm{t}}=\mathrm{s}_{\mathrm{i}}$, find $\mathrm{P}\left(\mathrm{q}_{\mathrm{t}}=\mathrm{s}_{\mathrm{i}} \mid \mathbf{o}\right)$

$$
P\left(q_{t}=s_{i} \mid o_{1}, \cdots, o_{T}\right)=\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{j} \alpha_{t}(j) \beta_{t}(j)}
$$

Forward probability: $\alpha_{t}(i)=P\left(o_{1} \ldots o_{t} \wedge q_{t}=s_{i}\right)$

Backward probability: $\boldsymbol{\beta}_{\boldsymbol{t}}(\boldsymbol{i})=\boldsymbol{P}\left(\boldsymbol{o}_{\boldsymbol{t + 1}} \ldots \boldsymbol{o}_{\boldsymbol{T}} \wedge \boldsymbol{q}_{\boldsymbol{t}}=\boldsymbol{s}_{\boldsymbol{i}}\right)$

E-step: State probabilities

- One state:

$$
P\left(q_{t}=s_{i} \mid o_{1}, \cdots, o_{T}\right)=\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{j} \alpha_{t}(j) \beta_{t}(j)}=S_{t}(i)
$$

- Two states in a row:
$P\left(q_{t}=s_{j}, q_{t+1}=s_{i} \mid o_{1}, \cdots, o_{T}\right)=\frac{\alpha_{t}(j) A_{i, j} \phi_{o_{t+1}, i} \beta_{t+1}(i)}{\sum_{j} \alpha_{t}(j) \beta_{t}(j)}=S_{t}(i, j)$

Recall: when states known
$-\pi_{A}=\frac{\# D\left(q_{1}-S_{A}\right)}{\# D}$
$-A_{i, j}=\frac{\# D\left(q_{t}-s_{i}, q_{t-1}=s_{j}\right)}{\# D\left(q_{t-1}=s_{j}\right)}$

- $\phi_{i, j}=\frac{\# D\left(o_{t}-i\right)}{\# D\left(q_{t}=S_{j}\right)}$

Review of HMMs in action

For classification, find highest probability class given features
Features for one sound:

- $\left[q_{1}, o_{1}, q_{2}, o_{2}, \ldots, q_{T}, o_{T}\right]$

Conclude word:
Generates states:

