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Hidden Markov Models

CISC 5800

Professor Daniel Leeds

Representing sequence data

• Spoken language

• DNA sequences

• Daily stock values

Example: spoken language

F?r plu? fi?e is nine

• Between F and r expect a vowel: “aw”, “ee”, “ah”; NOT “oh”, “uh”

• At end of “plu” expect consonant: “g”, “m”, “s”; NOT “d”, “p”
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Markov Models
Start with:

• n states: s1, …, sn

• Probability of initial start states: Π1,…, Π𝑛
• Probability of transition between states: Ai,j = P(qt=si|qt-1=sj)
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A dice-y example

• Two colored die

• What is the probability we start at sA?

• What is the probability we have the sequence of die choices: 

sA, sA?

• What is the probability we have the sequence of die choices: 

sB, sA, sB, sA?
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Π𝐴 = 0.3, Π𝐵 = 0.7

A dice-y example

• What is the probability we have the sequence of die choices: 

sB, sA, sB, sA?

• Dynamic programming: find answer for qt , then compute qt+1
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State\Time t1 t2 t3

sA 0.3

sB 0.7

Π𝐴 = 0.3, Π𝐵 = 0.7

𝑝𝑡 𝑖 = 

𝑗

𝑝 𝑞𝑡 = 𝑠𝑖|𝑞𝑡−1 = 𝑠𝑗 𝑝𝑡−1(𝑗)

Hidden Markov Models

• Actual state q “hidden”

• State produces visible data o: 𝜙𝑖,𝑗 = 𝑃(𝑜𝑡 = 𝑥𝑖|𝑞𝑡 = 𝑠𝑗)

• Compute 

𝑃 𝑶,𝑸|𝜽 = 𝑝(𝑞1|𝜋) 

𝑡=2

𝑇

𝑝(𝑞𝑡|𝑞𝑡−1, 𝑨) 

𝑡=1

𝑇

𝑝(𝑜𝑡|𝑞𝑡 , 𝝓)
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Deducing die based on observed “emissions”

• Each color is biased

• A (red) B (blue)

• We see: 5 What is probability of o=5 | B (blue)

• We see: 5, 3 What is probability of o=5,3 | B, B?
What is probability of o=5,3 and s=B,B
What is MOST probable s | o=5,3?
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o P(o|sA) P(o|sB)

1 .3 .1

2 .2 .1

3 .2 .1

4 .1 .2

5 .1 .2

6 .1 .3

Goal: calculate most likely states given 
observable data

•Define and use 𝛿𝑡(𝑖)

• Find the most likely path from q1 to qt that
• qt=si

• Outputs are o1, …, ot
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Viterbi algorithm: 𝛿𝑡(𝑖)

• 𝛿1 𝑖 = Π𝑖𝑃 𝑜1 𝑞1 = 𝑠𝑖 = Π𝑖𝜙1,𝑖

• 𝛿𝑡 𝑖 = max
𝑗
𝛿𝑡−1 𝑗 𝑃 𝑜𝑡 𝑞𝑡 = 𝑠𝑖 𝑃 𝑞𝑡 = 𝑠𝑖 𝑞𝑡−1 = 𝑠𝑗 =

𝐦𝐚𝐱
𝒋
𝜹𝒕−𝟏 𝒋 𝝓𝒕,𝒊𝑨𝒊,𝒋

• P(Q*|O)=argmaxQ P(Q|O)
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Parameters in HMM

• Initial probabilities: 𝜋𝑖

• Transition probabilities Ai,j

• Emission probabilities 𝜙𝑖,𝑗
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How do we learn 
these values?

Learning HMM parameters: 𝜋𝑖
First, assume we know the states
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x1: A,B,A,A,B
x2: B,B,B,A,A
x3: A,A,B,A,B
⋮

Compute MLE for each parameter

𝜋∗ = argmax
𝜋
 

𝑘

𝜋(𝑞1) 

𝑡=2

𝑇

𝑝 𝑞𝑡|𝑞𝑡−1

𝜋𝐴 =
#𝐷(𝑞1 = 𝑠𝐴)

#𝐷

Learning HMM parameters: Ai,j

First, assume we know the states
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x1: A,B,A,A,B
x2: B,B,B,A,A
x3: A,A,B,A,B
⋮

Compute MLE for each parameter

𝐴∗ = argmax
𝐴
 

𝑘

𝜋(𝑞1) 

𝑡=2

𝑇

𝑝 𝑞𝑡|𝑞𝑡−1

𝐴𝑖,𝑗 =
#𝐷(𝑞𝑡 = 𝑠𝑖, 𝑞𝑡−1 = 𝑠𝑗)

#𝐷(𝑞𝑡−1 = 𝑠𝑗)
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Learning HMM parameters: 𝜙𝑖,𝑗
First, assume we know the states
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x1: A,B,A,A,B
o1: 2,5,3,3,6

x2: B,B,B,A,A
o2: 4,5,1,3,2

x3: A,A,B,A,B
o3: 1,4,5,2,6
⋮

Compute MLE for each parameter

𝜙𝑖,𝑗 =
#𝐷(𝑜𝑡 = 𝑖, 𝑞𝑡 = 𝑠𝑗)

#𝐷(𝑞𝑡 = 𝑠𝑗)

Challenges in HMM learning

• Learning parameters (𝜋, 𝐴, 𝜙) with known states is not too hard

• BUT usually states are unknown

• If we had the parameters and the observations, we could figure out 
the states: Viterbi P(Q*|O)=argmaxQ P(Q|O)
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Expectation-Maximization, or “EM”

• Problem: Uncertain of yi (class), uncertain of 𝜃𝑖 (parameters)

• Solution: Guess yi, deduce 𝜃𝑖, re-compute yi, re-compute 𝜃𝑖 … etc.
OR:  Guess 𝜃𝑖, deduce yi, re-compute 𝜃𝑖, re-compute yi

Will converge to a solution

• E step: Fill in expected values for missing variables

• M step: Regular MLE given known and filled-in variables

Also useful when there are holes in your data
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Computing states qt

• Instead of picking one state: qt=si, find P(qt=si|o)

𝑃 𝑞𝑡 = 𝑠𝑖|𝑜1,⋯ , 𝑜𝑇 =
𝛼𝑡(𝑖)𝛽𝑡(𝑖)

 𝑗 𝛼𝑡(𝑗)𝛽𝑡(𝑗)

Forward probability:  𝜶𝒕 𝒊 = 𝑷(𝒐𝟏…𝒐𝒕 ∧ 𝒒𝒕 = 𝒔𝒊)

Backward probability:  𝜷𝒕 𝒊 = 𝑷(𝒐𝒕+𝟏…𝒐𝑻 ∧ 𝒒𝒕 = 𝒔𝒊)
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Details of forward and backward probabilities
Forward probability:  𝜶𝒕 𝒊 = 𝑷(𝒐𝟏…𝒐𝒕 ∧ 𝒒𝒕 = 𝒔𝒊)

𝛼1 𝑖 = 𝜙𝑜1,𝑖𝜋𝑖 = 𝑃 𝑜1 𝑞1 = 𝑠𝑖 𝑃(𝑞1 = 𝑠𝑖)

𝛼𝑡 𝑖 = 𝜙𝑜𝑡,𝑖 

𝑗

𝐴𝑖,𝑗𝛼𝑡−1 𝑗

𝛼𝑡 𝑖 = 𝑃 𝑜𝑡 𝑞𝑡 = 𝑠𝑖  

𝑗

𝑃 𝑞𝑡 = 𝑠𝑖 𝑞𝑡−1 = 𝑠𝑗 𝛼𝑡−1 𝑗

Backward probability:  𝜷𝒕 𝒊 = 𝑷(𝒐𝒕+𝟏…𝒐𝑻 ∧ 𝒒𝒕 = 𝒔𝒊)

𝛽𝑡 𝑖 = 

𝑗

𝐴𝑗,𝑖𝜙𝑜𝑡+1,𝑗𝛽𝑡+1 𝑗

𝛽𝑡 𝑖 = 

𝑗

𝑃 𝑞𝑡+1 = 𝑠𝑗 𝑞𝑡 = 𝑠𝑖 𝑃 𝑜𝑡+1 𝑞𝑡+1 = 𝑠𝑗 𝛽𝑡+1 𝑗
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Final 𝜷: 𝜷𝑻−𝟏(𝒊)

𝛽𝑇−1(𝑖) = 

𝑗

𝐴𝑗,𝑖𝜙𝑜𝑇−1,𝑗

= 𝑃 𝑞𝑇 = 𝑠𝑗 𝑞𝑇−1 = 𝑠𝑖 𝑃(𝑜𝑇|𝑞𝑇 = 𝑠𝑗)

E-step: State probabilities

• One state:

𝑃 𝑞𝑡 = 𝑠𝑖|𝑜1,⋯ , 𝑜𝑇 =
𝛼𝑡(𝑖)𝛽𝑡(𝑖)

 𝑗 𝛼𝑡(𝑗)𝛽𝑡(𝑗)
= 𝑆𝑡(𝑖)

• Two states in a row:

𝑃 𝑞𝑡 = 𝑠𝑗 , 𝑞𝑡+1 = 𝑠𝑖|𝑜1,⋯ , 𝑜𝑇 =
𝛼𝑡(𝑗)𝐴𝑖,𝑗𝜙𝑜𝑡+1,𝑖𝛽𝑡+1(𝑖)

 𝑗 𝛼𝑡(𝑗)𝛽𝑡(𝑗)
= 𝑆𝑡(𝑖, 𝑗)
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Recall: when states known

• 𝜋𝐴 =
#𝐷(𝑞1=𝑠𝐴)

#𝐷

• 𝐴𝑖,𝑗 =
#𝐷(𝑞𝑡=𝑠𝑖,𝑞𝑡−1=𝑠𝑗)

#𝐷(𝑞𝑡−1=𝑠𝑗)

• 𝜙𝑖,𝑗 =
#𝐷(𝑜𝑡=𝑖)

#𝐷(𝑞𝑡=𝑠𝑗)
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M-step

• 𝐴𝑖,𝑗 =
 𝑡 𝑆𝑡(𝑖,𝑗)

 𝑘  𝑡 𝑆𝑡(𝑘,𝑗)

• 𝜙𝑜𝑏𝑠,𝑖 =
 𝑡|𝒐𝒕=𝒐𝒃𝒔

𝑆𝑡(𝑖)

 𝒋  𝑡|𝒐𝒕=𝑗
𝑆𝑡(𝒊)

• 𝜋𝑖 =
 𝑠𝑒𝑞 𝑆1(𝑖)

 𝑗  𝑠𝑒𝑞 𝑆1(𝑗)
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Known states:

• 𝜋𝐴 =
#𝐷(𝑞1=𝑠𝐴)

#𝐷

• 𝐴𝑖,𝑗 =
#𝐷(𝑞𝑡=𝑠𝑖,𝑞𝑡−1=𝑠𝑗)

#𝐷(𝑞𝑡−1=𝑠𝑗)

• 𝜙𝑖,𝑗 =
#𝐷(𝑜𝑡=𝑖)

#𝐷(𝑞𝑡=𝑠𝑗)

Review of HMMs in action
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For classification, find highest probability class given features

Features for one sound:

• [q1, o1, q2, o2, …, qT, oT]

Conclude word:

Generates states:

Q

O
sound1 sound2 sound3


