Hidden Markov Models

CISC 5800 Professor Daniel Leeds

Representing sequence data

- Spoken language
- DNA sequences
- Daily stock values

Example: spoken language

F?r plu? fi?e is nine

- Between F and r expect a vowel: "aw", "ee", "ah"; NOT "oh", "uh"
- At end of "plu" expect consonant: "g", "m", "s"; NOT "d", "p"

Viterbi algorithm: $\delta_t(i)$

- $\delta_1(i) = \prod_i P(o_1 | q_1 = s_i) = \prod_i \phi_{1,i}$
- $\delta_t(i) = \max_j \delta_{t-1}(j) P(o_t | q_t = s_i) P(q_t = s_i | q_{t-1} = s_j) = \max_i \delta_{t-1}(j) \phi_{t,i} A_{i,j}$
- P(Q*|O)=argmax_Q P(Q|O)

First, assume we know the states Learning HMM parameters: $\phi_{i,j}$

x¹: A,B,A,A,B Compute MLE for each parameter **o**¹: 2,5,3,3,6 **x**²: B,B,B,A,A **o**²: 4,5,1,3,2 **x**³: A,A,B,A,B **o**³: 1,4,5,2,6 **i** $\frac{d}{d_t} = \frac{d_{D}(o_t = i, q_t = s_j)}{d_{D}(q_t = s_j)}$

Challenges in HMM learning

- Learning parameters (π , A, ϕ) with known states is not too hard
- BUT usually states are unknown
- If we had the parameters and the observations, we could figure out the states: Viterbi P(Q*|O)=argmax_Q P(Q|O)

Expectation-Maximization, or "EM"

- Problem: Uncertain of yⁱ (class), uncertain of θ^i (parameters)
- Solution: Guess yⁱ, deduce θ^i , re-compute yⁱ, re-compute θ^i ... etc. OR: Guess θ^i , deduce yⁱ, re-compute θ^i , re-compute yⁱ Will converge to a solution

• E step: Fill in expected values for missing variables

• M step: Regular MLE given known and filled-in variables Also useful when there are holes in your data

