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Bayesian Networks

CISC 5800

Professor Daniel Leeds

Approaches to learning/classification

For classification, find highest probability class given 
features

• P(x1,…,xn|y=?)

Approaches:

• Learn/use function(s) for probability
• P(light|Y=eclipse)=𝑁(𝜇𝑒𝑐𝑙𝑖𝑝𝑠𝑒 , 𝜎𝑒𝑐𝑙𝑖𝑝𝑠𝑒)

• Learn/use probability look-up table for 
each combination of features:

letter1 P(letter1 | word=“duck”)

“a” 0.001

“b” 0.010

“c” 0.005

“d” 0.950
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Joint probability over N features

Problem with learning table with N features:

• If all dependent, exponential number of model parameters

Burglar breaks in Alarm goes 
off

Jill gets call Zack gets call P(A,J,Z|B)

Y Y Y Y 0.3

Y Y Y N 0.03

Y Y N Y 0.03

Y Y N N 0.06

⋮ 3

Joint probability over N features

Naïve Bayes – all independent

• Linear number of model parameters

What if only some features are
independent?

Burglar 
breaks in

Alarm 
goes off

Jill gets 
call

Zack gets 
call

P(A,J,Z|B)

Y Y Y Y 0.3

Y Y Y N 0.03

Y Y N Y 0.03

Y Y N N 0.06

⋮
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Bayes nets: conditional independence

In Naïve Bayes: P(x1,x2,x3|y) = P(x1|y)P(x2|y)P(x3|y)

In Bayes nets, some variables depend on other variables:

Alarm depends on Burglar and Earthquake

Jill and Zack calls each depend only on Alarm

• P(B, E, A, J, Z) = P(B) P(E) P(A|B,E) P(J|A) P(Z|A)

E

A

J Z

B

B – Burglar
E – Earthquake
A – Alarm goes off
J – Jill is called
Z – Zack is called
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Bayes nets: conditional independence

In Bayes nets, some variables depend on other variables:

• P(B, E, A, J, Z) = P(B) P(E) P(A|B,E) P(J|A) P(Z|A)

In general for Bayes nets:

• P(x1,…,xn) =  𝑖 𝑃(𝑥𝑖|𝑃𝑎(𝑥𝑖))

• Pa(xi) are the “parents” of xi – the variables xi is 
conditioned on

B – Burglar
E – Earthquake
A – Alarm goes off
J – Jill is called
Z – Zack is called
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A

J Z
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Probability review

Conditional Probabilities:

• 𝑃 𝐴|𝐵 =
𝑃 𝐴,𝐵

𝑃 𝐵

Marginal Probability

• 𝑃 𝐴 =  𝑏∈𝐵𝑃 𝐴,𝐵 = 𝑏
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Health probabilities, find P(S,Lb,A | F)

F – Flu
S – Stress
Y – Age (years)
Lb – Weight
W – Weather
A – Activity
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S

W

Lb

YF

A

P(S,Lb,A|F) =
𝑃(𝑆,𝐿𝑏,𝐴,𝐹)

𝑃(𝐹)

= 
 𝑤∈𝑊  𝑦∈𝑌 𝑃(𝑊,𝐹,𝑌,𝑆,𝐿𝑏,𝐴)

𝑃(𝐹)

=
 𝒘∈𝑾  𝒚∈𝒀 𝑷 𝑭 𝑷 𝑾 𝑷 𝒀 𝑷(𝑺|𝑾,𝑭)𝑷(𝑳𝒃|𝑭,𝒀)𝑷(𝑨|𝑺,𝑳𝒃)

𝑷(𝑭)
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Health probabilities, 
find P(S,Lb,A | F)
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S

W

Lb

YF

A

Moving variables out of irrelevant 
summation loops saves computation power

P(S,Lb,A|F)

=
 𝒘∈𝑾  𝒚∈𝒀 𝑷 𝑭 𝑷 𝑾 𝑷 𝒀 𝑷(𝑺|𝑾,𝑭)𝑷(𝑳𝒃|𝑭,𝒀)𝑷(𝑨|𝑺,𝑳𝒃)

𝑷(𝑭)

= 
𝑃 𝐹  𝑤∈𝑊 𝑃 𝑊 𝑃(𝑆|𝑊,𝐹)  𝑦∈𝑌 𝑃 𝑌 𝑃(𝐿𝑏|𝐹,𝑌)𝑃(𝐴|𝑆,𝐿𝑏)

𝑃(𝐹)

Example evaluation of Bayes nets

Use joint probabilities to find more probable 
class-variable value

Compute P(E=yes|A,J,Z), P(E=no|A,J,Z)

𝑷 𝑬 𝑨, 𝑱, 𝒁 =
𝑷(𝑬,𝑨,𝑱,𝒁)

𝑷(𝑨,𝑱,𝒁)
=

 𝑩 𝑷(𝑬,𝑩,𝑨,𝑱,𝒁)

 𝑬  𝑩 𝑷(𝑬,𝑩,𝑨,𝑱,𝒁)

=
 𝑩 𝑷 𝑬 𝑷 𝑩 𝑷(𝑨|𝑬,𝑩)𝑷(𝑱|𝑨)𝑷(𝒁|𝑨)

 𝑬  𝑩 𝑷 𝑬 𝑷 𝑩 𝑷(𝑨|𝑬,𝑩)𝑷(𝑱|𝑨)𝑷(𝒁|𝑨)

B – Burglar
E – Earthquake
A – Alarm goes off
J – Jill is called
Z – Zack is called
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Example evaluation of Bayes nets

Use joint probabilities to find more probable 
class-variable value

Compute P(E=yes|A,J,Z), P(E=no|A,J,Z)

𝑷 𝑬 = 𝒚𝒆𝒔 𝑨 = 𝒂, 𝑱 = 𝒋, 𝒁 = 𝒛

=
 𝑩 𝑷 𝑬=𝒚𝒆𝒔 𝑷 𝑩 𝑷(𝑨=𝒂|𝑬=𝒚𝒆𝒔,𝑩)𝑷(𝑱=𝒋|𝑨=𝒂)𝑷(𝒁=𝒛|𝑨=𝒂)

 𝑬  𝑩 𝑷 𝑬=𝒚𝒆𝒔 𝑷 𝑩 𝑷(𝑨=𝒂|𝑬=𝒚𝒆𝒔,𝑩)𝑷(𝑱=𝒋|𝑨=𝒂)𝑷(𝒁=𝒛|𝑨=𝒂)

=
𝑷(𝑱=𝒋|𝑨=𝒂)𝑷(𝒁=𝒛|𝑨=𝒂)𝑷 𝑬=𝒚𝒆𝒔  𝑩 𝑷 𝑩 𝑷(𝑨=𝒂|𝑬=𝒚𝒆𝒔,𝑩)

𝑷(𝑱=𝒋|𝑨=𝒂)𝑷(𝒁=𝒛|𝑨=𝒂)  𝑬  𝑩 𝑷 𝑬 𝑷 𝑩 𝑷(𝑨=𝒂|𝑬,𝑩)

B – Burglar
E – Earthquake
A – Alarm goes off
J – Jill is called
Z – Zack is called
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Variable elimination

Pull constant terms outside the sigma-sum loop

Cancel out constants appearing in both 
numerator and denominator

𝑷 𝑬 = 𝒚𝒆𝒔 𝑨 = 𝒂, 𝑱 = 𝒋, 𝒁 = 𝒛

=
 𝑩 𝑷 𝑬=𝒚𝒆𝒔 𝑷 𝑩 𝑷(𝑨=𝒂|𝑬=𝒚𝒆𝒔,𝑩)𝑷(𝑱=𝒋|𝑨=𝒂)𝑷(𝒁=𝒛|𝑨=𝒂)

 𝑬  𝑩 𝑷 𝑬=𝒚𝒆𝒔 𝑷 𝑩 𝑷(𝑨=𝒂|𝑬=𝒚𝒆𝒔,𝑩)𝑷(𝑱=𝒋|𝑨=𝒂)𝑷(𝒁=𝒛|𝑨=𝒂)

=
𝑷(𝑱=𝒋|𝑨=𝒂)𝑷(𝒁=𝒛|𝑨=𝒂)𝑷 𝑬=𝒚𝒆𝒔  𝑩 𝑷 𝑩 𝑷(𝑨=𝒂|𝑬=𝒚𝒆𝒔,𝑩)

𝑷(𝑱=𝒋|𝑨=𝒂)𝑷(𝒁=𝒛|𝑨=𝒂)  𝑬  𝑩 𝑷 𝑬 𝑷 𝑩 𝑷(𝑨=𝒂|𝑬,𝑩)

B – Burglar
E – Earthquake
A – Alarm goes off
J – Jill is called
Z – Zack is called
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Example evaluation of Bayes nets

Use joint probabilities to find more probable 
class-variable value

Compute P(E=yes|A,J,Z), P(E=no|A,J,Z)

B – Burglar
E – Earthquake
A – Alarm goes off
J – Jill is called
Z – Zack is called
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Expectation-Maximization

• Problem: Uncertain of yi (class), uncertain of 𝜃𝑖 (parameters)

• Solution: Guess yi, deduce 𝜃𝑖, re-compute yi, re-compute 𝜃𝑖 … etc.
OR:  Guess 𝜃𝑖, deduce yi, re-compute 𝜃𝑖, re-compute yi

Will converge to a solution

• E step: Fill in expected values for missing variables

• M step: Regular MLE given known and filled-in variables

Also useful when there are holes in your data
17

EM example

Missing data in training set:

• E=yes, J=yes, Z=no

• Unknown:  class B (burglary),  feature A (alarm)

• Estimate A with a “random” guess

• Loop
• Estimate B=argmaxB P(B | E=yes, J=yes, Z=no, A=Aestimate)

• Estimate A=argmaxA P(A | E=yes, J=yes, Z=no, B=Bestimate)
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Document classification example

Two classes: {farm, zoo}

• 5 labeled zoo articles, 5 labeled farm articles

• 100 unlabeled training articles

Features: [% bat, % elephant, % monkey, % snake, % lion, %penguin]

• E.g., % bati = #{wordsInArticlei==bat}/#{wordsInArticlei}

Logistic regression classifier

19
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Iterative learning

• Learn w with labeled training data

• Use classifier to assign labels to originally unlabeled training data

• Learn w with known and newly-assigned labels

• Use classifier to re-assign labels to originally unlabeled training data

Converges to a stable answer

20

Local vs global optimum

• EM increases probability at each step

• Reaches local maximum

To seek “global maximum”

• Re-start EM at different locations in label/parameter space

Same principle in logistic regression gradient ascent
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Types of learning

Supervised: each training data point has known features and class label

• Most examples so far

Unsupervised: each training data point has known features,
but no class label

• ICA – each component meant to describe subset of 
data points

Semi-supervised: each train data point has known features, 
but only some have class labels

• Related to expectation maximization 22


