P(letter₁ | word="duck")

letter₁ "a"

"b"

"c"

"d"

0.001

0.010

0.005

0.950

Bayesian Networks

CISC 5800 Professor Daniel Leeds

Approaches to learning/classification

For classification, find highest probability class given features

- P(x₁,...,x_n|y=?)
- Approaches:
- Learn/use function(s) for probability
 P(light|Y=eclipse)=N(μ_{eclipse}, σ_{eclipse})
- Learn/use probability look-up table for each combination of features:

Joint probability over N features

Problem with learning table with N features:

• If all dependent, exponential number of model parameters

Burglar breaks in	Alarm goes off	Jill gets call	Zack gets call	P(A,J,Z B)
Υ	Υ	Υ	Υ	0.3
Υ	Υ	Υ	Ν	0.03
Υ	Υ	Ν	Y	0.03
Υ	Υ	Ν	Ν	0.06
		:		3

Joint probability over N features Naïve Bayes – all independent • Linear number of model parameters What if only **some** features are independent?

Missing data in training set:

- E=yes, J=yes, Z=no
- Unknown: class B (burglary), feature A (alarm)
- Estimate A with a "random" guess
- Loop
 - Estimate B=argmax_B P(B | E=yes, J=yes, Z=no, A=A_{estimate})
 - Estimate A=argmax_A P(A | E=yes, J=yes, Z=no, B=B_{estimate})

• 100 unlabeled training articles

Features: [% bat, % elephant, % monkey, % snake, % lion, %penguin]

• E.g., % batⁱ = #{wordsInArticleⁱ==bat}/#{wordsInArticleⁱ}

Logistic regression classifier

Iterative learning

- \bullet Learn $\boldsymbol{w}~$ with labeled training data
- Use classifier to assign labels to originally unlabeled training data
- Learn w with known and newly-assigned labels
- Use classifier to re-assign labels to originally unlabeled training data

Converges to a stable answer

Types of learning

Supervised: each training data point has known features and class label

• Most examples so far

Unsupervised: each training data point has known features, but no class label

20

• ICA – each component meant to describe subset of data points

Semi-supervised: each train data point has known features, but only some have class labels

• Related to expectation maximization