Bayesian Networks

CISC 5800
Professor Daniel Leeds

Approaches to learning/classification

For classification, find highest probability class given features

- $P\left(x_{1}, \ldots, x_{n} \mid y=\right.$? $)$

Approaches:

- Learn/use function(s) for probability
- $\mathrm{P}($ light $\mid \mathrm{Y}=\mathrm{eclipse})=N\left(\mu_{\text {eclipse }}, \sigma_{\text {eclipse }}\right)$

letter $_{1}$	$\mathrm{P}\left(\right.$ letter r_{1} \| word="duck")
"a"	0.001
"b"	0.010
"c"	0.005
"d"	0.950

- Learn/use probability look-up table for each combination of features:

Joint probability over N features

Problem with learning table with N features:

- If all dependent, exponential number of model parameters

Burglar breaks in	Alarm goes off	Jill gets call	Zack gets call	$\mathrm{P}(\mathrm{A}, \mathrm{J}, \mathrm{Z} \mid \mathrm{B})$
Y	Y	Y	Y	0.3
Y	Y	Y	N	0.03
Y	Y	N	Y	0.03
Y	Y	N		N
			\vdots	

Joint probability over N features

Naïve Bayes - all independent

- Linear number of model parameters

What if only some features are independent?

Burglar breaks in	Alarm goes off	Jill gets call	Zack gets call	$\mathrm{P}(\mathrm{A}, \mathrm{J}, \mathrm{Z} \mid \mathrm{B})$
Y	Y	Y	Y	0.3
Y	Y	Y	N	0.03
Y	Y	N	Y	0.03
Y	Y	N	N	0.06
			\vdots	

Bayes nets: conditional inde	$\begin{aligned} & \text { B - Burglar } \\ & \text { E - Earthquake } \end{aligned}$
In Naïve Bayes: $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \mid \mathrm{y}\right)=\mathrm{P}\left(\mathrm{x}_{1} \mid \mathrm{y}\right) \mathrm{P}\left(\mathrm{x}_{2} \mid y\right) \mathrm{P}\left(\mathrm{x}_{3} \mid \mathrm{y}\right)$	$\begin{aligned} & \text { A - Alarm goes off } \\ & \text { J Jill is called } \\ & \text { Z-Zack is called } \end{aligned}$

In Bayes nets, some variables depend on other variables:

- $P(B, E, A, J, Z)=P(B) P(E) P(A \mid B, E) P(J \mid A) P(Z \mid A)$

In general for Bayes nets:

- $\mathrm{P}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\prod_{i} P\left(x_{i} \mid P a\left(x_{i}\right)\right)$
- $\mathrm{Pa}\left(\mathrm{x}_{\mathrm{i}}\right)$ are the "parents" of $\mathrm{x}_{\mathrm{i}}-$ the variables x_{i} is conditioned on

Probability review

Conditional Probabilities:

- $P(A \mid B)=\frac{P(A, B)}{P(B)}$

Marginal Probability

- $P(A)=\sum_{b \in B} P(A, B=b)$

```
Health probabilities,
find P(S,Lb,A | F)
Moving variables out of irrelevant
summation loops saves computation power
```



```
P(S,Lb,A|F)
```


Example evaluation of Bayes nets

Use joint probabilities to find more probable class-variable value

Compute $P(E=y e s \mid A, J, Z), P(E=$ no $\mid A, J, Z)$
$P(E \mid A, J, Z)=\frac{P(E, A J, J)}{P(A, J, Z)}=\frac{\sum_{B} P(E, B, A, J, Z)}{\sum_{E} \sum_{B} P(E, B, A, J, Z)}$
$=\frac{\sum_{B} P(E) P(B) P(A \mid E, B) P(J \mid A) P(Z \mid A)}{\sum_{E} \sum_{B} P(E) P(B) P(A \mid E, B) P(J \mid A) P(Z \mid A)}$

B - Burglar
E-Earthquake
A- Alarm goes off
$J-$ Jill is called
Z-Zack is called

Variable elimination

Pull constant terms outside the sigma-sum loop	
Cancel out constants appearing in both numerator and denominator	B Burglar E - Earthquake A - Alarm goes off J- Jill is called $Z-$ Zack is called

$P(E=y e s \mid A=a, J=j, Z=z)$
$=\frac{\sum_{B} P(E=\text { yes }) P(B) P(A=a \mid E=\text { yes }, B) P(J=j \mid A=a) P(Z=z \mid A=a)}{\sum_{E} \sum_{B} P(E=\text { yes }) P(B) P(A=a \mid E=\text { yes }, B) P(J=j \mid A=a) P(Z=z \mid A=a)}$
$=\frac{P(J=j \mid A=a) P(Z=z \mid \Lambda=a) P(E=y e s) \sum_{B} P(B) P(A=a \mid E=y e s, B)}{}$

Example evaluation of Bayes nets

Use joint probabilities to find more probable class-variable value Compute $P(E=y e s \mid A, J, Z), P(E=n o \mid A, J, Z)$$\|$$B-$ Burglar $E-$ Earthquake $A-$ Alarm goes off $J-$ Jill is called $Z-Z a c k$ is called

Expectation-Maximization

- Problem: Uncertain of y^{i} (class), uncertain of θ^{i} (parameters)
- Solution: Guess y^{i}, deduce θ^{i}, re-compute y^{i}, re-compute θ^{i}... etc. OR: Guess θ^{i}, deduce y^{\prime}, re-compute θ^{i}, re-compute y^{i} Will converge to a solution
- E step: Fill in expected values for missing variables
- M step: Regular MLE given known and filled-in variables

Also useful when there are holes in your data

EM example

Missing data in training set:

- E=yes, J=yes, Z=no
- Unknown: class B (burglary), feature A (alarm)
- Estimate A with a "random" guess
- Loop
- Estimate $B=\operatorname{argmax}_{B} P\left(B \mid E=y e s, J=y e s, Z=n o, A=A_{\text {estimate }}\right)$
- Estimate $A=\operatorname{argmax}_{A} P\left(A \mid E=y e s, J=y e s, Z=n o, B=B_{\text {estimate }}\right)$

Document classification example

Two classes: \{farm, zoo\}

- 5 labeled zoo articles, 5 labeled farm articles
- 100 unlabeled training articles

Features: [\% bat, \% elephant, \% monkey, \% snake, \% lion, \%penguin]

- E.g., \% bat ${ }^{i}=$ \#\{wordsInArticle ${ }^{i}==$ bat $\} / \#\{w o r d s I n A r t i c l e ~ i\} ~$

Logistic regression classifier

Iterative learning

- Learn \mathbf{w} with labeled training data
- Use classifier to assign labels to originally unlabeled training data
- Learn w with known and newly-assigned labels
- Use classifier to re-assign labels to originally unlabeled training data

Local vs global optimum

- EM increases probability at each step
- Reaches local maximum

To seek "global maximum"

- Re-start EM at different locations in label/parameter space

Same principle in logistic regression gradient ascent

Types of learning

Supervised: each training data point has known features and class label

- Most examples so far

Unsupervised: each training data point has known features, but no class label

- ICA - each component meant to describe subset of data points

Semi-supervised: each train data point has known features, but only some have class labels

- Related to expectation maximization

