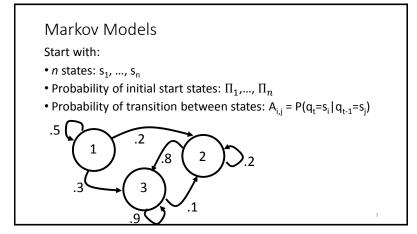
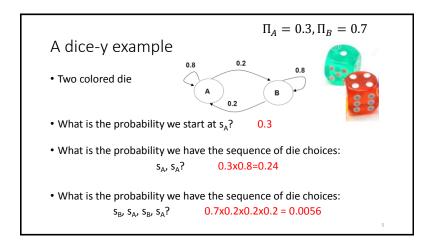
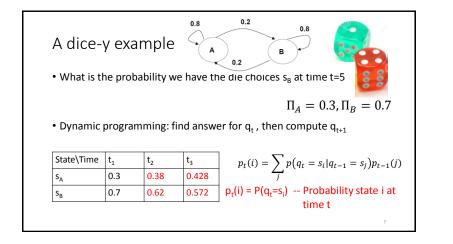
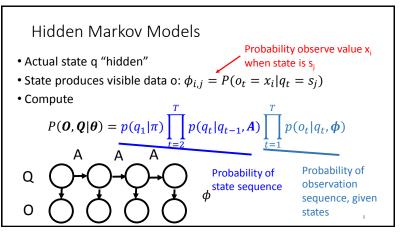
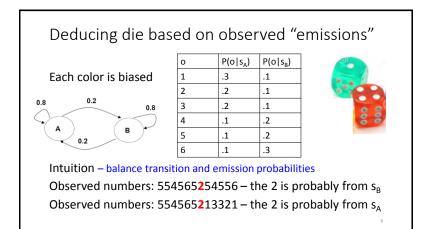
Hidden Markov Models CISC 5800 Professor Daniel Leeds Example: spoken language F?r plu? fi?e is nine Between F and r expect a vowel: "aw", "ee", "ah"; NOT "oh", "uh" At end of "plu" expect consonant: "g", "m", "s"; NOT "d", "p"

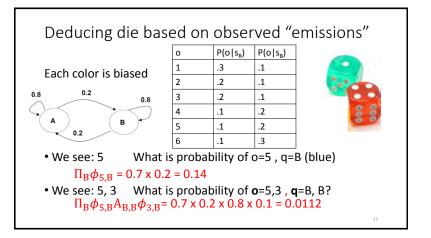


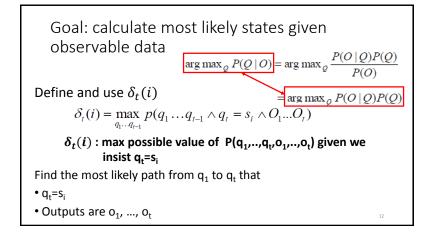


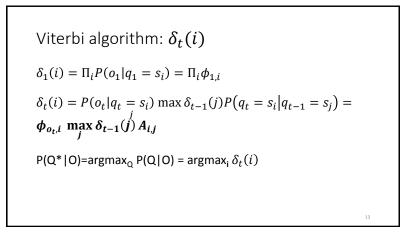


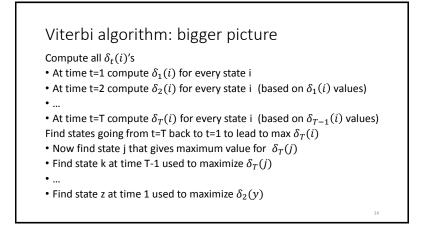


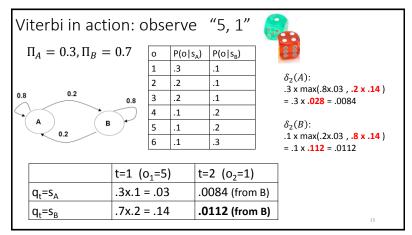


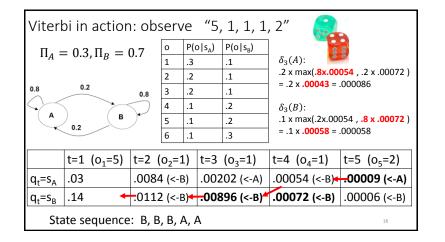


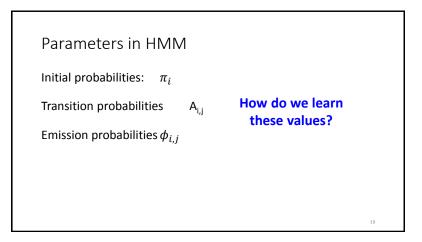


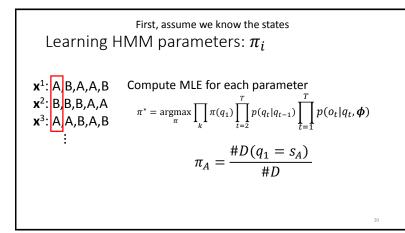


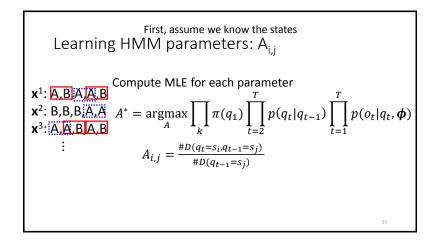


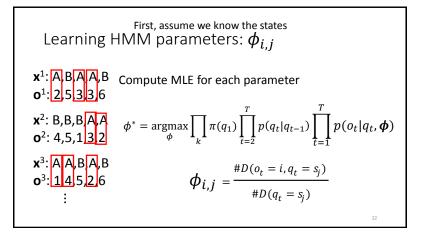


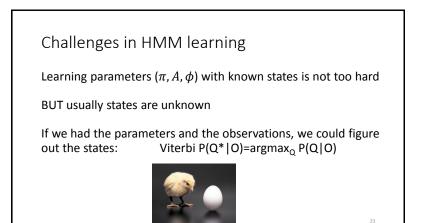












Expectation-Maximization, or "EM" Problem: Uncertain of y^i (class), uncertain of θ^i (parameters) Solution: Guess y^i , deduce θ^i , re-compute y^i , re-compute θ^i ... etc. OR: Guess θ^i , deduce y^i , re-compute θ^i , re-compute y^i **Will converge to a solution** E step: Fill in expected values for missing labels y M step: Regular MLE for θ given known and filled-in variables **Also useful when there are holes in your data** Computing states q_t Instead of picking one state: $q_t = s_i$, find $P(q_t = s_i | \mathbf{o})$ $P(q_t = s_i | o_1, \dots, o_T) = \frac{\alpha_t(i)\beta_t(i)}{\sum_j \alpha_t(j)\beta_t(j)}$ Forward probability: $\alpha_t(i) = P(o_1 \dots o_t \land q_t = s_i)$ Backward probability: $\beta_t(i) = P(o_{t+1} \dots o_T | q_t = s_i)$

Details of forward probability
Forward probability:
$$\alpha_t(i) = P(o_1 \dots o_t \land q_t = s_i)$$

 $\alpha_1(i) = \phi_{o_1,i}\pi_i = P(o_1|q_1 = s_i)P(q_1 = s_i)$
 $\alpha_t(i) = \phi_{o_t,i}\sum_j A_{i,j}\alpha_{t-1}(j)$
 $\alpha_t(i) = P(o_t|q_t = s_i)\sum_j P(q_t = s_i|q_{t-1} = s_j)\alpha_{t-1}(j)$

Details of backward probability
Backward probability:
$$\boldsymbol{\beta}_{t}(i) = \boldsymbol{P}(\boldsymbol{o}_{t+1} \dots \boldsymbol{o}_{T} | \boldsymbol{q}_{t} = \boldsymbol{s}_{i})$$

$$\boldsymbol{\beta}_{t}(i) = \sum_{j} A_{j,i} \boldsymbol{\phi}_{o_{t+1},j} \boldsymbol{\beta}_{t+1}(j)$$
$$\boldsymbol{\beta}_{t}(i) = \sum_{j} \boldsymbol{P}(\boldsymbol{q}_{t+1} = \boldsymbol{s}_{j} | \boldsymbol{q}_{t} = \boldsymbol{s}_{i}) \boldsymbol{P}(\boldsymbol{o}_{t+1} | \boldsymbol{q}_{t+1} = \boldsymbol{s}_{j}) \boldsymbol{\beta}_{t+1}(j)$$

Final $\boldsymbol{\beta}: \boldsymbol{\beta}_{T-1}(i)$
$$\boldsymbol{\beta}_{T-1}(i) = \sum_{j} A_{j,i} \boldsymbol{\phi}_{o_{T-1},j}$$
$$= \boldsymbol{P}(\boldsymbol{q}_{T} = \boldsymbol{s}_{j} | \boldsymbol{q}_{T-1} = \boldsymbol{s}_{i}) \boldsymbol{P}(\boldsymbol{o}_{T} | \boldsymbol{q}_{T} = \boldsymbol{s}_{j})$$

E-step: State probabilities One state: $P(q_t = s_i | o_1, \dots, o_T) = \frac{\alpha_t(i)\beta_t(i)}{\sum_j \alpha_t(j)\beta_t(j)} = S_t(i)$ Two states in a row: $P(q_t = s_j, q_{t+1} = s_i | o_1, \dots, o_T) = \frac{\alpha_t(j)A_{i,j}\phi_{o_{t+1},i}\beta_{t+1}(i)}{\sum_i \sum_j \alpha_t(j)A_{i,j}\phi_{o_{t+1},i}\beta_{t+1}(i)}$ $= S_t(i,j)$

Recall: when states known

$$\pi_{A} = \frac{\#D(q_{1}=s_{A})}{\#D}$$

$$A_{i,j} = \frac{\#D(q_{t}=s_{i},q_{t-1}=s_{j})}{\#D(q_{t-1}=s_{j})}$$

$$\phi_{i,j} = \frac{\#D(o_{t}=i)}{\#D(q_{t}=s_{j})}$$

