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Hidden Markov Models

CISC 5800

Professor Daniel Leeds

Representing sequence data

• Spoken language

• DNA sequences

• Daily stock values

Example: spoken language

F?r plu? fi?e is nine

• Between F and r expect a vowel: “aw”, “ee”, “ah”; NOT “oh”, “uh”

• At end of “plu” expect consonant: “g”, “m”, “s”; NOT “d”, “p”
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Markov Models
Start with:

• n states: s1, …, sn

• Probability of initial start states: Π1,…, Π𝑛
• Probability of transition between states: Ai,j = P(qt=si|qt-1=sj)
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A dice-y example

• Two colored die

• What is the probability we start at sA? 0.3

• What is the probability we have the sequence of die choices: 

sA, sA? 0.3x0.8=0.24

• What is the probability we have the sequence of die choices: 

sB, sA, sB, sA? 0.7x0.2x0.2x0.2 = 0.0056
5

Π𝐴 = 0.3, Π𝐵 = 0.7
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A dice-y example

• What is the probability we have the die choices sB at time t=5 

• Dynamic programming: find answer for qt , then compute qt+1

7

State\Time t1 t2 t3

sA 0.3 0.38 0.428

sB 0.7 0.62 0.572

Π𝐴 = 0.3, Π𝐵 = 0.7

𝑝𝑡 𝑖 =  

𝑗

𝑝 𝑞𝑡 = 𝑠𝑖|𝑞𝑡−1 = 𝑠𝑗 𝑝𝑡−1(𝑗)

pt(i) = P(qt=si)  -- Probability state i at 
time t

Hidden Markov Models

• Actual state q “hidden”

• State produces visible data o: 𝜙𝑖,𝑗 = 𝑃(𝑜𝑡 = 𝑥𝑖|𝑞𝑡 = 𝑠𝑗)

• Compute 

𝑃 𝑶,𝑸|𝜽 = 𝑝(𝑞1|𝜋)  

𝑡=2

𝑇

𝑝(𝑞𝑡|𝑞𝑡−1, 𝑨)  

𝑡=1

𝑇

𝑝(𝑜𝑡|𝑞𝑡 , 𝝓)
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Q

O
𝜙

A A A

Probability observe value xi

when state is sj

Probability of 
state sequence

Probability of 
observation 
sequence, given 
states

Deducing die based on observed “emissions”

Each color is biased

Intuition – balance transition and emission probabilities

Observed numbers: 554565254556 – the 2 is probably from sB

Observed numbers: 554565213321 – the 2 is probably from sA
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o P(o|sA) P(o|sB)

1 .3 .1

2 .2 .1

3 .2 .1

4 .1 .2

5 .1 .2

6 .1 .3

Deducing die based on observed “emissions”

Each color is biased

• We see: 5 What is probability of o=5 , q=B (blue)

• We see: 5, 3 What is probability of o=5,3 | q=B, B?
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o P(o|sR) P(o|sB)

1 .3 .1

2 .2 .1

3 .2 .1

4 .1 .2

5 .1 .2

6 .1 .3
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Goal: calculate most likely states given 
observable data

Define and use 𝛿𝑡(𝑖)

𝜹𝒕(𝒊) : max possible value of  P(q1,..,qt,o1,..,ot) given we 
insist qt=si

Find the most likely path from q1 to qt that

• qt=si

• Outputs are o1, …, ot 12

Viterbi algorithm: 𝛿𝑡(𝑖)

𝛿1 𝑖 = Π𝑖𝑃 𝑜1 𝑞1 = 𝑠𝑖 = Π𝑖𝜙1,𝑖

𝛿𝑡 𝑖 = 𝑃 𝑜𝑡 𝑞𝑡 = 𝑠𝑖 max
𝑗

𝛿𝑡−1 𝑗 𝑃 𝑞𝑡 = 𝑠𝑖 𝑞𝑡−1 = 𝑠𝑗 =

𝝓𝒐𝒕,𝒊 𝐦𝐚𝐱𝒋
𝜹𝒕−𝟏 𝒋 𝑨𝒊,𝒋

P(Q*|O)=argmaxQ P(Q|O) = argmaxi 𝛿𝑡 𝑖
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Viterbi algorithm: bigger picture
Compute all 𝛿𝑡(𝑖)’s

• At time t=1 compute 𝛿1(𝑖) for every state i

• At time t=2 compute 𝛿2(𝑖) for every state i (based on 𝛿1 𝑖 values)

• …

• At time t=T compute 𝛿𝑇(𝑖) for every state i (based on 𝛿𝑇−1 𝑖 values)

Find states going from t=T back to t=1 to lead to max 𝛿𝑇(𝑖)

• Now find state j that gives maximum value for  𝛿𝑇(𝑗)

• Find state k at time T-1 used to maximize 𝛿𝑇(𝑗)

• …

• Find state z at time 1 used to maximize 𝛿2(𝑦)
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Viterbi in action: observe   “5, 1”
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o P(o|sA) P(o|sB)

1 .3 .1

2 .2 .1

3 .2 .1

4 .1 .2

5 .1 .2

6 .1 .3

Π𝐴 = 0.3, Π𝐵 = 0.7

t=1  (o1=5) t=2  (o2=1)

qt=sA .3x.1 = .03

qt=sB .7x.2 = .14

𝛿2 𝐴 :

𝛿2 𝐵 :
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Viterbi in action: observe   “5, 1, 1”

17

o P(o|sA) P(o|sB)

1 .3 .1

2 .2 .1

3 .2 .1

4 .1 .2

5 .1 .2

6 .1 .3

Π𝐴 = 0.3, Π𝐵 = 0.7

t=1  (o1=5) t=2  (o2=1) t=3  (o3=1)

qt=sA .3x.1 = .03 .0084 (from B) .00202 (from A)

qt=sB .7x.2 = .14 .0112 (from B) .000896 (from B)

𝛿3 𝐴 :
.3 x max(.8x.0084 , .2 x .0112 ) 
= .3 x .00672 = .00202

𝛿3 𝐵 :
.1 x max(.2x.0084 , .8 x .0112 ) 
= .1 x .00896 = .000896

Parameters in HMM

Initial probabilities: 𝜋𝑖

Transition probabilities Ai,j

Emission probabilities𝜙𝑖,𝑗

20

How do we learn 
these values?

Learning HMM parameters: 𝜋𝑖
First, assume we know the states
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x1: A,B,A,A,B
x2: B,B,B,A,A
x3: A,A,B,A,B
⋮

Compute MLE for each parameter

𝜋∗ = argmax
𝜋
 

𝑘

𝜋(𝑞1) 

𝑡=2

𝑇

𝑝 𝑞𝑡|𝑞𝑡−1  
𝑡=1

𝑇

𝑝(𝑜𝑡|𝑞𝑡, 𝝓)

𝜋𝐴 =
#𝐷(𝑞1 = 𝑠𝐴)

#𝐷

Learning HMM parameters: Ai,j

First, assume we know the states
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x1: A,B,A,A,B
x2: B,B,B,A,A
x3: A,A,B,A,B
⋮

Compute MLE for each parameter

𝐴∗ = argmax
𝐴
 

𝑘

𝜋(𝑞1) 

𝑡=2

𝑇

𝑝 𝑞𝑡|𝑞𝑡−1  

𝑡=1

𝑇

𝑝(𝑜𝑡|𝑞𝑡 , 𝝓)

𝐴𝑖,𝑗 =
#𝐷(𝑞𝑡=𝑠𝑖,𝑞𝑡−1=𝑠𝑗)

#𝐷(𝑞𝑡−1=𝑠𝑗)
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Learning HMM parameters: 𝜙𝑖,𝑗
First, assume we know the states

23

x1: A,B,A,A,B
o1: 2,5,3,3,6

x2: B,B,B,A,A
o2: 4,5,1,3,2

x3: A,A,B,A,B
o3: 1,4,5,2,6
⋮

Compute MLE for each parameter

𝜙∗ = argmax
𝜙
 

𝑘

𝜋(𝑞1) 

𝑡=2

𝑇

𝑝 𝑞𝑡|𝑞𝑡−1  
𝑡=1

𝑇

𝑝(𝑜𝑡|𝑞𝑡, 𝝓)

𝜙𝑖,𝑗 =
#𝐷(𝑜𝑡 = 𝑖, 𝑞𝑡 = 𝑠𝑗)

#𝐷(𝑞𝑡 = 𝑠𝑗)

Challenges in HMM learning

Learning parameters (𝜋, 𝐴, 𝜙) with known states is not too hard

BUT usually states are unknown

If we had the parameters and the observations, we could figure 
out the states: Viterbi P(Q*|O)=argmaxQ P(Q|O)

24

Expectation-Maximization, or “EM”

Problem: Uncertain of yi (class), uncertain of 𝜽𝑖 (parameters)

Solution: Guess yi, deduce 𝜽𝑖, re-compute yi, re-compute 𝜽𝑖 … etc.
OR:  Guess 𝜽𝑖, deduce yi, re-compute 𝜽𝑖, re-compute yi

Will converge to a solution

E step: Fill in expected values for missing labels y

M step: Regular MLE for 𝜽 given known and filled-in variables

Also useful when there are holes in your data

25

Computing states qt

Instead of picking one state: qt=si, find P(qt=si|o)

𝑃 𝑞𝑡 = 𝑠𝑖|𝑜1, ⋯ , 𝑜𝑇 =
𝛼𝑡(𝑖)𝛽𝑡(𝑖)

 𝑗 𝛼𝑡(𝑗)𝛽𝑡(𝑗)

Forward probability:  𝜶𝒕 𝒊 = 𝑷(𝒐𝟏…𝒐𝒕 ∧ 𝒒𝒕 = 𝒔𝒊)

Backward probability:  𝜷𝒕 𝒊 = 𝑷(𝒐𝒕+𝟏…𝒐𝑻|𝒒𝒕 = 𝒔𝒊)

26
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Details of forward probability

Forward probability:  𝜶𝒕 𝒊 = 𝑷(𝒐𝟏…𝒐𝒕 ∧ 𝒒𝒕 = 𝒔𝒊)

𝛼1 𝑖 = 𝜙𝑜1,𝑖𝜋𝑖 = 𝑃 𝑜1 𝑞1 = 𝑠𝑖 𝑃(𝑞1 = 𝑠𝑖)

𝛼𝑡 𝑖 = 𝜙𝑜𝑡 ,𝑖 

𝑗

𝐴𝑖,𝑗𝛼𝑡−1 𝑗

𝛼𝑡 𝑖 = 𝑃 𝑜𝑡 𝑞𝑡 = 𝑠𝑖  

𝑗

𝑃 𝑞𝑡 = 𝑠𝑖 𝑞𝑡−1 = 𝑠𝑗 𝛼𝑡−1 𝑗
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Details of backward probability

Backward probability:  𝜷𝒕 𝒊 = 𝑷(𝒐𝒕+𝟏…𝒐𝑻|𝒒𝒕 = 𝒔𝒊)

𝛽𝑡 𝑖 = 

𝑗

𝐴𝑗,𝑖𝜙𝑜𝑡+1,𝑗𝛽𝑡+1 𝑗

𝛽𝑡 𝑖 =  

𝑗

𝑃 𝑞𝑡+1 = 𝑠𝑗 𝑞𝑡 = 𝑠𝑖 𝑃 𝑜𝑡+1 𝑞𝑡+1 = 𝑠𝑗 𝛽𝑡+1 𝑗
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Final 𝜷: 𝜷𝑻−𝟏(𝒊)

𝛽𝑇−1(𝑖) =  

𝑗

𝐴𝑗,𝑖𝜙𝑜𝑇,𝑗

= 𝑃 𝑞𝑇 = 𝑠𝑗 𝑞𝑇 = 𝑠𝑖 𝑃(𝑜𝑇|𝑞𝑇 = 𝑠𝑗)

E-step: State probabilities

One state:

𝑃 𝑞𝑡 = 𝑠𝑖|𝑜1, ⋯ , 𝑜𝑇 =
𝛼𝑡(𝑖)𝛽𝑡(𝑖)

 𝑗 𝛼𝑡(𝑗)𝛽𝑡(𝑗)
= 𝑆𝑡(𝑖)

Two states in a row:

𝑃 𝑞𝑡 = 𝑠𝑗, 𝑞𝑡+1 = 𝑠𝑖|𝑜1, ⋯ , 𝑜𝑇 =
𝛼𝑡(𝑗)𝐴𝑖,𝑗𝜙𝑜𝑡+1,𝑖𝛽𝑡+1(𝑖)

 𝑓 𝑔 𝛼𝑡(𝑔)𝐴𝑓,𝑔𝜙𝑜𝑡+1,𝑓𝛽𝑡+1(𝑓)
= 𝑆𝑡(𝑖, 𝑗)
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Recall: when states known

𝜋𝐴 =
#𝐷(𝑞1=𝑠𝐴)

#𝐷

𝐴𝑖,𝑗 =
#𝐷(𝑞𝑡=𝑠𝑖,𝑞𝑡−1=𝑠𝑗)

#𝐷(𝑞𝑡−1=𝑠𝑗)

𝜙𝑖,𝑗 =
#𝐷(𝑜𝑡=𝑖)

#𝐷(𝑞𝑡=𝑠𝑗)

31
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M-step

𝐴𝑖,𝑗 =
 𝑡 𝑆𝑡 𝑖,𝑗

 𝑡 𝑆𝑡(𝑗)

𝜙𝑜𝑏𝑠,𝑖 =
 𝑡|𝒐𝒕=𝒐𝒃𝒔 𝑆𝑡(𝑖)

 𝑡 𝑆𝑡(𝒊)

𝜋𝑖 = 𝑆1(𝑖)

32

Known states:

• 𝜋𝐴 =
#𝐷(𝑞1=𝑠𝐴)

#𝐷

• 𝐴𝑖,𝑗 =
#𝐷(𝑞𝑡=𝑠𝑖,𝑞𝑡−1=𝑠𝑗)

#𝐷(𝑞𝑡−1=𝑠𝑗)

• 𝜙𝑖,𝑗 =
#𝐷(𝑜𝑡=𝑖 𝐴𝑁𝐷 𝑞𝑡=𝑠𝑗)

#𝐷(𝑞𝑡=𝑠𝑗)

Review of HMMs in action

34

For classification, find highest probability class given features

Features for one sound:

• [q1, o1, q2, o2, …, qT, oT]

Conclude word:

Generates states:

Q

O
sound1 sound2 sound3


