Convolutional neural nets

(and the brain)

CISC 5800
Extra content

Innovations in computer vision: Convolutional neural networks

- Introduced by Yann LeCun (IEEE 1998) for digit recognition
- Popularized by Alex Krizhevsky (NIPS 2012) for broad object recognition
(11) (U2) (U3) (U4) (U5) Image-Net: photos of $>100 \mathrm{~K}$ object classes

2012: best non conv-net 26% error rate

Year	Group	Error
2012	Krizhevsky	15.3%
2014	VGG	7.3%
2014	GoogLeNet	6.7%
$200,000 \mathrm{BC}$	Human Vision	5.1%

Computer models of cortical vision 2.0

Why understand CNNs?

Insights on:

- Making better-performing models
- Making simpler models

How do CNNs work?

Collection of "neurons" divided among k layers

Each neuron looks for one pattern
Each neuron looks for same pattern at multiple locations in input

Example full network - Krizhevsky NIPS 2012

Eight layers
One, two, or four sub-layers
256-384 neurons per layer

Convolution

Each neuron looks for same pattern at multiple locations in input

- How big a location (size)?
- How many locations (stride)?

"Spectrogram" as image

- Speech, motion, stock-prices converted to frequency-over-time
- Learn 2D patterns from spectrograms

LWWWWWWWWWW

- Or learn wave-gram from wavelets

Inflating data set
-Flip/rotate image

- Change lighting/contrast

