

What is machine learning

- Finding patterns in data
- Adapting program behavior
- Advertise a customer's favorite products
- Search the web to find pictures of dogs
- Change radio channel when user says "change channel"

What's covered in this class

- Theory: describing patterns in data
 - Probability
 - Linear algebra
 - Calculus/optimization
- Implementation: programming to find and react to patterns in data
 - Popular and successful algorithms
 - Matlab
 - Data sets of text, speech, pictures, user actions, neural data...

Outline of topics

- Groundwork: probability and slopes
- Classification overview: Training, testing, and overfitting
- Basic classifiers: Naïve Bayes and Logistic Regression
- Advanced classifiers: Neural networks and support vector machines

Deep learning Kernel methods

- Dimensionality reduction: Feature selection, information criteria
- Graphical models: Hidden Markov model (possibly Bayes nets)
- Expectation-Maximization

What you need to do in this class

- Class attendance
- Assignments: homeworks (4) and final project
- Exams: midterm and final
- Don't cheat
 - You may discuss homeworks with other students, but your submitted work must be your own. Copying is not allowed.

Resources

- Office hours: Wednesday 5-6pm and by appointment
- Course web site: http://storm.cis.fordham.edu/leeds/cisc5800
- Fellow students
- Textbooks/online notes
- Matlab

Probability

What is the probability that a child likes chocolate?

Name Chocolate? • Ask 100 children Sarah Yes • Count who likes chocolate Melissa Yes • Divide by number of children asked Darren No Stacy Yes P("child likes chocolate") = $\frac{85}{100} = 0.85$ Brian No In short: P(C)=0.85 C="child likes chocolate"

Random variables

A variable can take on a value from a given set of values:

- {True, False}
- {Cat, Dog, Horse, Cow}
- {0,1,2,3,4,5,6,7}

A random variable holds each value with a given probability Example: **binary variable**

• P(LikesChocolate) = P(LikesChocolate=True) = 0.85

Marginal and conditional probabilities	
For two binary random variables A and B • P(A) = P(A,B)+P(A,B') = P(A=True, B=True) + P(A=True, B=False) • P(B) = P(A,B)+P(A',B)	
For marginal probability P(X), "marginalize" over all possible values of the other random variables	
• Prob(C I) : Probability child likes chocolate given s/he likes ice cream $P(C I) = \frac{P(C,I)}{P(I)} = \frac{P(C,I)}{P(C,I) + P(C',I)}$	
	18

20

Independence

If the truth value of B does not affect the truth value of A, we say A and B are **independent**.

- P(A | B) = P(A)
- P(A,B) = P(A) P(B)

Multi-valued random variables A random variable can hold more than two values, each with a given probability • P(Animal=Cat)=0.5 • P(Animal=Dog)=0.3 • P(Animal=Horse)=0.1 • P(Animal=Cow)=0.1

Grade		
Grade	Honor-Student	P(G,H)
А	False	0.05
В	False	0.05
С	False	0.05
D	False	0.1
А	True	0.3
В	True	0.2
С	True	0.15
D	True	0.1
	B C D A B C	B False C False D False A True B True C True

5

More on derivatives:
$$\frac{d}{dx}f(x) = f'(x)$$

• $\frac{d}{dx}f(w) = 0$ -- w is not related to x, so derivative is 0
• $\frac{d}{dx}(f(g(x)))=g'(x) \cdot f'(g(x))$
• $\frac{d}{dx}\log x = \frac{1}{x}$
• $\frac{d}{dx}e^x = e^x$

