## Machine Learning

CISC 5800
Dr Daniel Leeds

## What is machine learning

- Finding patterns in data
- Adapting program behavior
- Advertise a customer's favorite products
- Search the web to find pictures of dogs
- Change radio channel when user says "change channel"




## Outline of topics

- Groundwork: probability and slopes
- Classification overview: Training, testing, and overfitting
- Basic classifiers: Naïve Bayes and Logistic Regression
- Advanced classifiers: Neural networks and support vector machines
Deep learning Kernel methods
- Dimensionality reduction: Feature selection, information criteria
- Graphical models: Hidden Markov model (possibly Bayes nets)
- Expectation-Maximization


## What's covered in this class

- Theory: describing patterns in data
- Probability
- Linear algebra
- Calculus/optimization
- Implementation: programming to find and react to patterns in data
- Popular and successful algorithms
- Matlab
- Data sets of text, speech, pictures, user actions, neural data...


## What you need to do in this class

- Class attendance
- Assignments: homeworks (4) and final project
- Exams: midterm and final
- Don't cheat
- You may discuss homeworks with other students, but your submitted work must be your own. Copying is not allowed.


## Resources

- Office hours: Wednesday $5-6 \mathrm{pm}$ and by appointment
- Course web site: http://storm.cis.fordham.edu/leeds/cisc5800
- Fellow students

- Textbooks/online notes
- Matlab



## Probability and basic calculus

## Probability

What is the probability that a child likes chocolate?

- Ask 100 children
- Count who likes chocolate

| Name | Chocolate? |
| :--- | :--- |
| Sarah | Yes |
| Melissa | Yes |
| Darren | No |
| Stacy | Yes |
| Brian | No |

$P($ "child likes chocolate" $)=\frac{85}{100}=0.85$
C="child likes chocolate"

## General probability properties

$P(A)$ means "Probability that statement $A$ is true"

- $0 \leq \operatorname{Prob}(\mathrm{A}) \leq 1$
- Prob(True)=1
- $\operatorname{Prob}($ False)=0


## Random variables

A variable can take on a value from a given set of values:

- \{True, False\}
- \{Cat, Dog, Horse, Cow\}
- $\{0,1,2,3,4,5,6,7\}$

A random variable holds each value with a given probability Example: binary variable

- $P($ LikesChocolate $)=P($ LikesChocolate $=$ True $)=0.85$
$\mathrm{C}=$ "child likes chocolate"
Complements
P ("child likes chocolate") $=\frac{85}{100}=0.85$
What is the probability that a child DOES NOT like chocolate?

Complement: C' = "child doesn't like chocolate"

$$
P\left(C^{\prime}\right)=.15
$$

All children (the full "sample space")

In general: $P\left(A^{\prime}\right)=1-P(A)$


## Marginal and conditional probabilities

For two binary random variables $A$ and $B$

- $P(A)=P(A, B)+P\left(A, B^{\prime}\right)=P(A=$ True, $B=$ True $)+P(A=$ True, $B=$ False $)$
- $P(B)=P(A, B)+P\left(A^{\prime}, B\right)$

For marginal probability $\mathrm{P}(\mathrm{X})$, "marginalize" over all possible values of the other random variables

- $\operatorname{Prob}(\mathrm{C} \mid \mathrm{I})$ : Probability child likes chocolate given $\mathrm{s} /$ he likes ice cream

$$
\mathrm{P}(\mathrm{C} \mid \mathrm{I})=\frac{P(C, I)}{P(I)}=\frac{P(C, I)}{P(C, I)+P\left(C^{\prime}, I\right)}
$$

## Independence

## Multi-valued random variables

A random variable can hold more than two values, each with a given probability

- $P$ (Animal=Cat)=0.5
- P (Animal=Dog)=0.3
- $P($ Animal $=$ Horse $)=0.1$
- $P($ Animal $=C o w)=0.1$


## Probability rules: multi-valued variables

For given random variable $A$ :

- $\mathrm{P}\left(A=a_{i}\right.$ and $\left.A=a_{j}\right)=0$ if $i \neq j$
- $\sum_{i} P\left(A=a_{i}\right)=1$

- $P\left(A=a_{i}\right)=\sum_{j} P\left(A=a_{i}, B=b_{j}\right)$
$a$ is a value assignment for variable $A$


## Probability table

| - $\mathrm{P}(\mathrm{G}=\mathrm{C}, \mathrm{H}=$ True $)=0.15$ | Grade | Honor-Student | P(G,H) |
| :---: | :---: | :---: | :---: |
|  | A | False | 0.05 |
| - $\mathrm{P}(\mathrm{H}=$ True $)=0.75$ | B | False | 0.05 |
|  | C | False | 0.05 |
| $\text { - } \mathrm{P}(\mathrm{G}=\mathrm{C} \mid \mathrm{H}=\text { True })=\frac{.15}{.75}=0.2$ | D | False | 0.1 |
|  | A | True | 0.3 |
| - $\mathrm{P}(\mathrm{H}=$ True $\mid \mathrm{G}=\mathrm{C})=\frac{.15}{.2}=0.75$ | B | True | 0.2 |
|  | C | True | 0.15 |
|  | D | True | 0.1 |

## Continuous random variables

A random variable can take on a continuous range of values

- From 0 to 1
- From 0 to $\infty$
- From $-\infty$ to $\infty$

Probability expressed through a
"probability density function" $f(x)$


The Gaussian function
$f_{\text {gauss }}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$

- Mean $\mu$ - center of distribution ${ }^{0}$

- Standard deviation $\sigma$-width of distribution
- Which color is $\mu=-2, \sigma^{2}=0.5$ ? Which color is $\mu=0, \sigma^{2}=0.2$ ?
- $N\left(\mu_{1}, \sigma_{1}^{2}\right)+N\left(\mu_{2}, \sigma_{2}^{2}\right)=N\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$


## Common probability distributions

- Uniform: $f_{\text {uniform }}(x)=\left\{\begin{array}{cl}\frac{1}{b-a} & \text { if } a \leq x \leq b \\ 0 & \text { otherwise }\end{array}\right.$

- Gaussian: $f_{\text {gauss }}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$



## Calculus: finding the slope of a function

What is the minimum value of: $f(x)=x^{2}-5 x+6$
Find value of $x$ where slope is 0

General rules: slope of $\mathrm{f}(\mathrm{x}): \frac{d}{d x} f(x)=f^{\prime}(x)$

- $\frac{d}{d x} x^{a}=a x^{a-1}$
- $\frac{d}{d x} k f(x)=k f^{\prime}(x)$

- $\frac{d}{d x}[f(x)+g(x)]=f^{\prime}(x)+g^{\prime}(x)$


## Calculus: finding the slope of a function

What is the minimum value of: $f(x)=x^{2}-5 x+6$

- $f^{\prime}(x)=2 x-5$
- What is the slope at $x=5$ ? $f^{\prime}(5)=5$
- What is the slope at $x=-3$ ? $f^{\prime}(-3)=-11$
- What value of $x$ gives slope of 0 ? $x=2.5$


More on derivatives: $\frac{d}{d x} f(x)=f^{\prime}(x)$

- $\frac{d}{d x} f(w)=0 \quad--\mathrm{w}$ is not related to x , so derivative is 0
- $\frac{d}{d x}(f(g(x)))=g^{\prime}(x) \cdot f^{\prime}(g(x))$
- $\frac{d}{d x} \log x=\frac{1}{x}$
- $\frac{d}{d x} e^{x}=e^{x}$


The goal of a classifier

- Learn function C to maximize
correct labels $(\mathrm{Y})$ based on features $(\mathrm{X})$



## Giraffe detector

- Label x : height
- Class y : True or False ("is giraffe" or "is not giraffe")

Learn optimal classification parameter(s)

- Parameter: $\mathbf{x}^{\text {thresh }}$

Example function:

$$
C(x)=\left\{\begin{array}{l}
\text { True if } x>x^{\text {thresh }} \\
\text { False otherwise }
\end{array}\right.
$$

Learning our classifier parameter(s)

- Adjust parameter(s) based on observed data
- Training set: contains features and corresponding labels


|  | 1.5 | True |
| :---: | :---: | :---: |
| 4 | 2.2 | True |
|  | 1.8 | True |
|  | 1.2 | False |
|  | 0.9 | False |

Be careful with your training set

- What if we train with only baby giraffes and ants?
- What if we train with only T rexes and adult giraffes?

Training vs. testing

- Training: learn parameters from set of data in each class
- Testing: measure how often classifier correctly identifies new data
- More training reduces classifier error $\varepsilon$
- Too much training data causes worse testing error - overfitting


