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Bayesian classification

CISC 5800
Professor Daniel Leeds

Classifying with probabilities

Example goal: Determine is it cloudy out
* Available data: Light detector: x € [0,25]
* Potential class (atmospheric states): Y={Cloudy, Non-Cloudy}

Each class (atmospheric state) y has
associated probability distribution P(x)

Actually each y has a likelihood distribution
P(x|uy, Jy)

Classifying with probabilities  ,

Example goal: Determine is it cloudy out 01

0.1

* Measure light: x 005

» Compute P(x|py, 0,) for y=Cloudy and 0!
y=Non-Cloudy

* Pick y which gives greatest likelihood P(x|uy, ay)
argmax,,P(x|u,, 0y)

This is Maximum Likelihood classification

What if there’s an eclipse?

* Let’s add a third potential class:
Y={Cloudy, Non-Cloudy, Eclipse}

* What is most likely class if x=97?

* Eclipses are low probability!
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Incorporating prior probability . .
Probability review: Bayes rule
* Define prior probabilities for each class P(y) = P(uy, 0y) P(AB)
Probability of class y same as probability of parameters i, o), Recall:  P(AIB) ==
and: P(4, B) = P(B|A)P(A)
* “Posterior S-robabilits” estimated as likelihood X prior : The trye
P(x|uy, ay) P(uy, 0y P(B|4) P(4) posterior
SO: P(AlB) = W
 Classify as argmax,,P(x|uy, gy, ) P(wy, 0y) [
. . _ _ _| p(p16y) P(8))
» Terminology: py, 0y, are “parameters.” In general use 6 Equivalently:  P(y|x) = P(6,x) = P(6,ID) 5 D)

Here: 6, = {[Jy, ay} . “Posterior” estimate is P(xley) P(Gy)

Typical classification approaches
The posterior estimate

* MLE — Maximum Likelihood: Determine parameters/class which
maximize probability of the data

- argmax P(6,|D) « P(D|6,)P(6,) argmax P(D|6,)
Oy 0y

¢ Posterior « Likelihood x Prior o - means proportional

We “ignore” the P(D) denominator * MAP — Maximum A Posteriori: Determine parameters/class
that has maximum probability

argmax P(0y|D)
V]
y

because D stays same while comparing
different classes (y represented by 6,)
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Bernoulli distribution — coin flips

We have three coins with known biases (favoring heads or tails)
How can we determine our current coin?

Flip K times to see which bias it has

Data (D): {HHTH, TTHH, TTTT, HTTT}  Bias (6,): p, probability of H for coiny

P(D|6,) = p'(1 =)™ [H|-#heads, |T| - #tails

Bernoulli distribution — reexamined

T

P(D|6,) = pi'(1 - py) [H| - # heads, |T| - # tails

0 if tails on flip k
1 if heads on flip k

P(loy) = [ | pi(a=p,)

More rigorously: in K trials, side;, = {

Optimization: finding the maximum likelihood
parameter for a fixed class (fixed coin)

arggnax P(DI|6,) = p, - probability of Head

argmax p3|,H| (1 - py)ITl
P

Equivalently, maximize log P(D|6,)

argmax |H|logp, + |T| log(1 - py)
Dy

The properties of logarithms

log(x)

ce?=beologh=a

ca<beloga<logh
*logab =loga +logh
*loga™ =nloga

exp(x)

(Le)

0.1)

Convenient when dealing with small probabili‘tiés‘ '
*0.0000454 x 0.000912 =0.0000000414 -> -10+-7=-17
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Intuition of the MLE result

_ A
Py S TH + 1T

* Probability of getting heads is # heads divided by # total flips

Finding the maximum a posteriori

* P(6,|D) < P(D|6,)P(6,)

25

\ a=p=05 —
Y a=5pf=1 —
. . . . \ u_;-ﬁ:;i
Incorporating the Beta prior: 2 \ P e
8% t(1-9)F1 .
P(O) =——2— :
(0) e .
argmax P(D|6,)P(6,) = \\\,_\
[2 0 -

0 0.2 0.4 0.6 0B 1

argmaxlog P(D|6,) + log P(6,)
o

Intuition of the MAP result

|H| + (a—1)
[Hl+ (@-D+ITI+(B-1)

Py =

* Prior has strong influence when |H| and |T| small
* Prior has weak influence when |H| and |T| large

Multinomial distribution

* What is mood of person in current minute? M={Happy, Sad}
* Measure his/her actions every ten seconds: A={Cry, Jump, Laugh, Yell}

Data (D): {LLILCY, JILYIL, CCLLLJ, JJJJJJ} - HaPPV m

Bias (6,): Probability table Cry
Jump 0.3 0.2
Laugh 0.5 0.1
Yell 0.1 0.3

|Cry| 17 | |Laugh| i
P(D6y) = ()" (prm) M (plamaty prei)’et!
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Multinomial distribution — reexamined

|Laugh|

ICryl |Jump|
p(0l0y) = (57) 04" 3

L (p;e”)lYelll

0 if trial, # Action
1 if trial, = Action

ion.\ O (trialg=Action;)
p(Dlgy) = Hk l_L (p;\ctlonl) k

More rigorously: in K measures, 8(trial, = Action) = {

Learning parameters

#D{A=a;\M=m )

MLE: P(A = ai|M = mj) = p}i' = #D{M=m;}

#D(A=ap\M=m;)+(B;-1)
#D(M=m)+3m(Bm—1)

#D(M=m))+(Bj~1)
ID[+Zm(Bm—1)

MAP: P(A = a;|M =m;) =

P(Yy=y;)=

Multiple multi-variate probabilities

Mood based on Action, Tunes,

| Happy [sad |

Weather Cry, Jazz,Sun  0.003  0.102

Cry, Jazz, Rain 0.024 0.025
argmaxg, P(A, T, W|0y) {

Cry, Rap, Snow  0.011 0.115
How many entries in probability Laugh, Rap, Rain  0.042  0.007
table? :

Yell, Opera, Wind 0.105  0.052

Naive bayes:

| [Happy [sad _

Assuming independence of input features J2zz 005 04
Rap 0.5 0.3

ar%maxP(A, T,W|0y) = Opera 0.45 0.3
y

argmax P(A|0,)P(T|0,)P(W |6
i (416,)P(T16,)P(W|6,) " |Happy |Sad |

How many entriesin €y 01 05 Sl i

probability tables? Jump 03 0.2 Snow 0.3 0.3
Laugh 0.5 0.1 Wind 0.05 0.2

Yell 0.1 0.3

28




