Bayesian classification CISC 5800 Professor Daniel Leeds

Classifying with probabilities

Example goal: Determine is it cloudy out

• Measure light: x• Compute $P(x|\mu_y,\sigma_y)$ for y=Cloudy and y=Non-Cloudy

• Pick y which gives greatest likelihood $P(x|\mu_y,\sigma_y)$ argmax $_yP(x|\mu_y,\sigma_y)$ This is **Maximum Likelihood** classification

Incorporating prior probability

- Define **prior** probabilities for each class $P(y) = P(\mu_y, \sigma_y)$ Probability of class y same as probability of parameters μ_y, σ_y
- "Posterior probability" estimated as likelihood \times prior : $P(x|\mu_y,\sigma_y)$ $P(\mu_y,\sigma_y)$
- Classify as $\operatorname{argmax}_{y} P(x|\mu_{y}, \sigma_{y}) P(\mu_{y}, \sigma_{y})$
- Terminology: μ_y , σ_y are "parameters." In general use $\boldsymbol{\theta}_y$ Here: $\boldsymbol{\theta}_y = \left\{\mu_y, \sigma_y\right\}$. "**Posterior"** estimate is $P(x|\theta_y) P(\boldsymbol{\theta}_y)$

Probability review: Bayes rule

Recall:
$$P(A|B) = \frac{P(A,B)}{P(B)}$$

and:
$$P(A,B) = P(B|A)P(A)$$

so:
$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

Equivalently:
$$P(y|x) = P(\theta_y|x) = P(\theta_y|D) = \frac{P(D|\theta_y)P(\theta_y)}{P(D)}$$

The posterior estimate

- $\underset{\boldsymbol{\theta}_{y}}{\operatorname{argmax}} P(\boldsymbol{\theta}_{y} | \boldsymbol{D}) \propto P(\boldsymbol{D} | \boldsymbol{\theta}_{y}) P(\boldsymbol{\theta}_{y})$
- Posterior \propto Likelihood \times Prior \propto means proportional We "ignore" the P(D) denominator because D stays same while comparing different classes (y represented by θ_v)

Typical classification approaches

 MLE – Maximum Likelihood: Determine parameters/class which maximize probability of the data

$$\underset{\boldsymbol{\theta}_{y}}{\operatorname{argmax}} P(\boldsymbol{D}|\boldsymbol{\theta}_{y})$$

• MAP – Maximum A Posteriori: Determine parameters/class that has maximum probability

$$\underset{\boldsymbol{\theta}_{y}}{\operatorname{argmax}} P(\boldsymbol{\theta}_{y}|\boldsymbol{D})$$

10

The **true**

posterior

Bernoulli distribution – coin flips

We have three coins with known biases (favoring heads or tails)

How can we determine our current coin?

Flip K times to see which bias it has

Data (**D**): {HHTH, TTHH, TTTT, HTTT} Bias (θ_y) : ρ_y probability of H for coin y

$$P(\mathbf{D}|\theta_y) = p_y^{|H|} (1 - p_y)^{|T|}$$
 |H| - # heads, |T| - # tails

12

Bernoulli distribution - reexamined

$$P(\boldsymbol{D}|\theta_y) = p_y^{|H|} (1 - p_y)^{|T|}$$
 |H| - # heads, |T| - # tails

More rigorously: in
$$K$$
 trials, $side_k = \begin{cases} 0 & \text{if tails on flip k} \\ 1 & \text{if heads on flip k} \end{cases}$

$$P(\mathbf{D}|\theta_y) = \prod_k p_y^{side_k} (1-p_y)^{(1-side_k)}$$

3

Optimization: finding the maximum likelihood parameter for a fixed class (fixed coin)

$$rgmax P(m{D}|m{ heta}_y) = p_y$$
 - probability of Head $rgmax p_y^{|H|} (1-p_y)^{|T|}$

Equivalently, maximize
$$\log P(\boldsymbol{D}|\theta_{\mathcal{Y}})$$
 argmax $|H|\log p_{\mathcal{Y}} + |T|\log (1-p_{\mathcal{Y}})$

15

The properties of logarithms

•
$$\log ab = \log a + \log b$$

•
$$\log a^n = n \log a$$

Convenient when dealing with small probabilities

• $0.0000454 \times 0.000912 = 0.0000000414 \rightarrow -10 + -7 = -17$

16

Intuition of the MIF result

$$p_{\mathcal{Y}} = \frac{|H|}{|H| + |T|}$$

• Probability of getting heads is # heads divided by # total flips

Finding the maximum a posteriori

- $P(\theta_y|\mathbf{D}) \propto P(\mathbf{D}|\theta_y)P(\theta_y)$
- Incorporating the Beta prior:

$$P(\theta) = \frac{\theta^{\alpha - 1} (1 - \theta)^{\beta - 1}}{B(\alpha, \beta)}$$

 $\underset{\theta}{\operatorname{argmax}} P(D|\theta_y) P(\theta_y) = \\ \operatorname{argmax} \log P(D|\theta_y) + \log P(\theta_y)$

Intuition of the MAP result

$$p_y = \frac{|H| + (\alpha - 1)}{|H| + (\alpha - 1) + |T| + (\beta - 1)}$$

- Prior has strong influence when |H| and |T| small
- Prior has weak influence when |H| and |T| large

12

Multinomial distribution

- What is mood of person in current minute? M={Happy, Sad}
- Measure his/her actions every ten seconds: A={Cry, Jump, Laugh, Yell}

Data (**D**): {LLJLCY, JJLYJL, CCLLLJ, JJJJJJ} Bias (θ_{ν}): Probability table

	Нарру	Sad	
Cry	0.1	0.5	
Jump	0.3	0.2	
Laugh	0.5	0.1	
Yell	0.1	0.3	

$$P(\boldsymbol{D}|\theta_y) = (p_y^{Cry})^{|Cry|}(p_y^{Jump})^{|Jump|}(p_y^{Laugh})^{|Laugh|}(p_y^{Yell})^{|Yell|}$$

3

Multinomial distribution – reexamined

$$P(\boldsymbol{D}|\boldsymbol{\theta}_{y}) = (p_{y}^{Cry})^{|Cry|}(p_{y}^{Jump})^{|Jump|}(p_{y}^{Laugh})^{|Laugh|}(p_{y}^{Yell})^{|Yell|}$$

More rigorously: in K measures, $\delta(trial_k = \text{Action}) = \begin{cases} 0 & \text{if } trial_k \neq \text{Action} \\ 1 & \text{if } trial_k = \text{Action} \end{cases}$ $P(\mathbf{D}|\theta_y) = \prod_k \prod_i \left(p_y^{\text{Action}_i}\right)^{\delta(trial_k = \text{Action}_i)}$

24

Learning parameters

MLE:
$$P(A = a_i | M = m_j) = p_j^i = \frac{\#D\{A = a_i \land M = m_j\}}{\#D\{M = m_j\}}$$

MAP:
$$P(A = a_i | M = m_j) = \frac{\#D(A = a_k \land M = m_j) + (\beta_j - 1)}{\#D(M = m_j) + \sum_m (\beta_m - 1)}$$

$$P(Y = y_j) = \frac{\#D(M = m_j) + (\beta_j - 1)}{\|D\| + \sum_m (\beta_m - 1)}$$

25

Sad

0.4

0.3

0.3

Multiple multi-variate probabilities

Mood based on Action, Tunes, Weather

 $\operatorname{argmax}_{\boldsymbol{\theta}_{\boldsymbol{y}}} P(A, T, W | \boldsymbol{\theta}_{\boldsymbol{y}})$

How many entries in probability table?

	Нарру	Sad
Cry, Jazz, Sun	0.003	0.102
Cry, Jazz, Rain	0.024	0.025
	÷	
Cry, Rap, Snow	0.011	0.115
	:	
Laugh, Rap, Rain	0.042	0.007
	÷	
Yell, Opera, Wind	0.105	0.052

Naïve bayes:

Assuming independence of input features

 $\underset{\boldsymbol{\theta}_{y}}{\operatorname{argmax}} P(A, T, W | \boldsymbol{\theta}_{y}) =$

 $\underset{\boldsymbol{\theta_y}}{\operatorname{argmax}} P(A|\boldsymbol{\theta_y}) P(T|\boldsymbol{\theta_y}) P(W|\boldsymbol{\theta_y})$

How many entries in probability tables?

	Нарру	Sad
Cry	0.1	0.5
Jump	0.3	0.2
Laugh	0.5	0.1
Yell	0.1	0.3

	Hanne	Cad
	Нарру	Sad
Sun	0.6	0.2
Rain	0.05	0.3
Snow	0.3	0.3
Wind	0.05	0.2

Happy

0.05

0.5

Opera 0.45

Jazz

Rap

0.05 0.2

5