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Support Vector Machines

CISC 5800
Professor Daniel Leeds

Separating boundary, defined by w

X X
o\| x *
o X

Of O

* Separating hyperplane
splits class 0 and class 1

* Plane is defined by line w
perpendicular to plan

* |s data point x in class 0 or
class 1? wx+b >0 class 1
w'x+b < 0 class 0

But, where do we place the boundary?

pd x Logistic regression:

S for boundary w

A * Qutlier data pulls boundar

towards it

LL(y|x; w):

X Z(yi —1)w'x! —log (1 + e‘WT"i)
7

* Each data point x’ considered

Max margin classifiers

X

O ® x

Focus on boundary points

Find largest margin between
boundary points on both sides

Works well in practice

We can call the boundary
points “support vectors”
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Maximum margin definitions
Classify as +1

M \ if wx + b
\ wix+b =1 Classify as -1
wix+b=0 ifwlx+b<-1

wix+bh=—-1 Undefined
if-1<wlx+b<1

v

* M is the margin width

* x*is a +1 point closest to boundary, 2
X is a -1 point closest to boundary M =

wlw

xt =w+x~

A derivation

Q
M/ \ wix+b=2=1 ’77‘91./7
\ wix+b=1[swixt +b=+1
\ cxt=Aw+xT
wix+b=-1

wix+b=0

wlxt+b=+1

wl(Aw +x7) + b = +1
cAww+wlix~+b=+1
ewlw—1—-b+b=+1

v maximize M minimize ww 2
. |x+ — X I =M - 0/1 = m
M derivation Support vector machine (SVM) optimization

M/ \ ewlx~+bh=-1

\ wix+b=1swlxt+b=+1

\ wix+b=0 cxt=w+x
wix+b=-1

cxt—x"|=M
M= |Aw+x —x7| = |Aw| = A|w|

M= IwlTw
2 2
*M=—-Vwiw =
wTw o
maximize M minimize wTw

x X x
max,, M = ZT o *
wlw O\ %
o
min, wiw 0O O\ x
subject to (o)

wix+b>1 for x in class 1
wix+bh< -1

Optimization with constraints: Wf(wf) = 0 with Lagrange multipliers.
j

for x in class -1

* Gradient descent

* Matrix calculus
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Support vector machine (SVM) optimization
with slack variables

What if data not linearly separable?

argmin,,, w'w + CY; ¢!
subject to

wlix+bh<—-1+¢ for xin class -1
& >0 Vi

Each error ¢; is penalized based on
distance from separator

Support vector machine (SVM) optimization

with slack variables -, %[O o
x - |9 ©

. . (o)
Example: Linearly separable but with narrow x)‘ X o
margins x X ~ O o

X
| xe | - 0
argmin,,, ww + CY,; €' x “xlo ™
subject to

wix+b<—-1+¢t for xinclass -1
& >0 Vi

Hyper-parameters for learning

argmin,, wTw+ CY; ¢;

Optimization constraints: C influences tolerance for label errors versus
narrow margins

L . wi
T J
wj —wj+e [x}(y‘ —gwTxh) — T

Gradient ascent:

* g influences effect of individual data points in learning

* T number of training examples, L number of loops through data —
balance learning and over-fitting

Regularization: A influences the strength of your prior belief

Alternate SVM formulation
® X x
O\ ®
@)
O ®

© To classify sample x¥, compute:

W= Z aixlyl
7

X Support vectors x; have a; > 0

y; are the data labels +1 or -1

wlixk +p = Z alyixix® + b
- ,
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Example W=Zaixiyi
xl = [_11],311 = +1,loc1 =0.5
x? = [g],yz =+1,a%2=07

x3 = [:ﬂ,yS =-1,a%=1

xt = [__0:;’5], yt=-1,a*=02
w

0

1
=losv14061= 1)

Zaiyi=0 .

© o.=5 x [_1] +0.7X [0] —-1x [:ﬂ —0.2x [__035]

Hyper—pa rameters to learn
Each data point x' has N features (presuming classify with w’x+b)
Separator: wand b

* N elements of w, 1 value for b: N+1 parameters OR
« t support vectors -> t non-zero a, 1 value for b: t+1 parameters

Classifying with additional dimensions
Note: More dimensions makes it easier to separate T
training points: training error minimized, may risk over-fit

xf

No linear Linear separator

separator
20

o(x)
15| X X

_—

2

X = | X1, X
Lexfl o

e X

5

OOO

X1 0

-4 -3-2-1 012 3 4 4 -3 -2 -1 01 2 3 4

X1

wixk + b= z at yi(a) x + b

Quadratic mapping function (math) =

2 2
X1, Xy X3 Xg => X1, Xy, X3, Xgy X12, Xp2, ovey XqXg, X1X3, eeey XpXgy X3Xg

Nx(N-1)
2

N features->N + N + ~ N2 features

N2 values to learn for w in higher-dimensional space

Or, observe: (WTx + 1)? = v2x2 + -+ + vix}
+vlexle + + vN_lvaN_lxN

v with N elements
operating in quadratic
space

+v1x1 + -+ UnXn
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Quadratic mapping function Simplified
X= [Xy, X,] > [V2x,, V2x,, X2 X2, V2x,%5, 1]
xi=[5,-2] -> [10, -4, 25, 4,-20,1] x*=[3,-1] ->[6,-2,9, 1, -6, 1]

o(x) p(xK) =30 + 4+ 225+ 4+ 60 + 1 = 324

Or, observe: (xiTx" + 1)2 =((15+2) + 1)2 = (18)? =324

Mapping function(s)

* Map from low-dimensional space x = (x4, x,) to higher

dimensional space ¢(x) = (V2xy,V2x5, x7,x%,v2x,x5, 1)

* N data points guaranteed to be separable in space of N-1

dimensions or more
w= Z a;p(xt)y!
i

Classifying x*:

z aiyiq)(xi)T(p(x") +b

L

Kernels
Classifying x*:

Z ayip(xt) o(x¥) +b

4

Kernel trick:
* Estimate high-dimensional dot product with function

*K(x,2k) = (x!) o (x¥)

Now classifying x*

Z a;y'K(xl,x*) + b

4

Radial Basis Kernel

Try projection to infinite dimensions
— 2 2
p(x) = [x1 ,...,xn,xl,...,xn,...,xfo...,erlO]

0 1 2 3 =)
ionreX =X X L X X X
Taylor expansion: e* = ol + m + o + 3 + -+ o

K(xi, xk) = exp <_ (xiz_:zk)z>
Note: (xi — xk)z - (xi _ xk)T(xi _ xk)

Draw separating plane to curve around all support vectors
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Example RBF-kernel separator

Large margin

Non-linear separation

Potential dangers of RBF-kernel separator

O p 3
@) X O x X Small margin - overfitting
'®) O X x Non-linear separation
O O X
O X X
e X
@) O P X

The power of SVM (+kernels)

Boundary defined by a few support vectors
* Caused by: maximizing margin

* Causes: less overfitting

* Similar to: regularization

Kernels keep number of learned parameters in check

Binary -> M-class classification

* Learn boundary for class m vs all other classes

* Only need M-1 separators for M classes — Mt class is for data
outside of classes 1, 2, 3, ..., M-1

* Find boundary that gives highest margin for data points xi




Benefits of generative methods
* P(D|0) and P(0|D) can generate non-linear boundary

* E.g.: Gaussians with multiple variances

—HKHK—OOOCH X
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