
 

 

1. Consider the following four vectors: 

 

(i) 𝒙1 = [

−1
0.5
2
0

]  (ii) 𝒙2 = [

−0.5
0
1

−2

] (iii) 𝒙3 = [

0
1

−1
0.5

] 

 

(a) What is the magnitude of each vector? 

 

   (i) √𝒙1𝑇
𝒙1 = √−12 + 0.52 + 22 + 02 = √1 + 0.25 + 4 + 0 = √5.25 ≈ 𝟐. 𝟑 

   (ii) √𝒙2𝑇
𝒙2 = √−0.52 + 02 + 12 + −22 = √0.25 + 0 + 1 + 4 = √5.25 ≈ 𝟐. 𝟑 

   (iii) √𝒙3𝑇
𝒙3 = √02 + 12 + −12 + 0.52 = √0 + 1 + 1 + 0.25 = √2.25=1.5 

 

(b) What is the result of each dot product below? 

 

x1 T x2     

 

[

−1
0.5
2
0

]

𝑇

[

−0.5
0
1

−2

] = 0.5 + 0 + 2 + 0 = 𝟐. 𝟓  

 

 

x3 T x2   

[

0
1

−1
0.5

]

𝑇

[

−0.5
0
1

−2

] = 0 + 0 + (−1) + (−1) = −𝟐  

 

 

x1 T x3 

[

−1
0.5
2
0

]

𝑇

[

0
1

−1
0.5

] = 0 + 0.5 − 2 + 0 = −𝟏. 𝟓  

 

 

2. We wish to use a Bayesian classifier to distinguish between two classes of birds: yi=D (for 

Duck) or yi=G (for Goose). Each data point contains 5 features, measuring: motion speed, 

weight, size, number of daily hours-of-sleep, and typical depth-of-dive into water. 



 

Presume we use a Gaussian Naïve Bayes classifier – we assume each P(xi
j | yi) is Gaussian. 

 

(a) How will we calculate the posterior probability:  P(yi | xi
speed, xi

weight, xi
size, xi

sleepHours, xi
diveDepth) 

? 

(What other probabilities will we use for this calculation?) 

 

To estimate the likelihood for each feature separately and then multiply the prior. 

P(yi | xi
speed, xi

weight, xi
size, xi

sleepHours, xi
diveDepth) ≈ 

P(xi
speed | yi) P(xi

weight | yi) P(xi
size | yi) P(xi

sleepHours | yi) P(xi
diveDepth | yi) P(yi) 

 

Note: the actual complete posterior probability is: 

P(y|xspeed,xweight,…xdiveDepth) = P(xspeed|y)…P(xdiveDep|y)P(y) / P(xspeed,xweight,…xdiveDep) 

However, for the purposes of the Naïve Bayes classifier, we can estimate the posterior and 

avoid dividing by P(xspeed,xweight,…xdiveDep) because the x values for a single classification are 

constant. In classification we keep the feature values xi constant and test different potential 

classes yi.\ 

 

 

(b) How many parameters will we learn under the Naïve Bayes assumption? 

2 parameters (mean and variance) for each feature likelihood, plus prior for yi=Duck or (1-

yi=Duck) for yi=Goose:  5x2+1 = 11 

 

 

(c) Let us now assume we will use a logistic classifier instead on the same data set. How many 

parameters must we learn to determine the separating hyperplane? 

 

5 dimensions: we learn 5+1 = 6 parameters  

 

 

3. For each example below, which of the following mapping functions will make these points 

linearly separable? 

Possible mapping function: 𝜑1= ([x1, x2])->[(x1+x2)2]   

𝜑2= ([x1, x2])->[cos(x1),cos(2x1),cos(3x1)]  𝜑3= ([x1, x2])->[|x1|, |x2|]   

 

(a) 



   𝝋3 

 

 I intended 𝝋1 to be correct also, but it would be correct only if 𝝋1 = ([x1,x2]->[x1
2+x2

2]) 

 

(b) 

 𝝋2 

 

 

 

4. Consider the following optimization covered in class: 

 

minw,b wTw + C∑ 𝜉𝑗𝑗  

such that 

     wTxi + b ≥ +1 -𝜉𝑖 if xi is class +1 

     wTxi + b ≤ -1 +𝜉𝑖 if xi is class -1 

 

 

(a) Which term(s) in the optimization is/are used to permit limited classification errors? 

C and 𝝃𝒋 

 

(b) Which term(s) in the optimization is/are used to maximize the margin? 



wTw 

 

(c) Which term(s) in the optimization is/are used to encourage proper classification? 

wTxi + b ≥ +1   and   wTxi + b ≤ -1 

  



 

5. Consider each set of support vector and find the resulting w 
 

(a) 𝒙𝟏 = [
2
1

−2
],   𝑦1 = +1,   𝛼1 = 0.5  𝒙𝟐 = [

−3
3
0

],   𝑦2 = −1,   𝛼2 = 1 

𝒙𝟑 = [
1
4

−4
],   𝑦3 = +1,   𝛼3 = 0.5 

𝐰 = ∑ αiyi𝐱i

i

       𝒘𝟏 = 0.5 × [
2
1

−2
] − 1 × [

−3
3
0

] + 0.5 × [
1
4

−1
] = [

1 + 3 + 0.5
0.5 − 3 + 2

−1 + 0 − 0.5
] = [

𝟒. 𝟓
−𝟎. 𝟓
−𝟏. 𝟓

] 

 

 

(b) 𝒙𝟏 = [
1
1
0

],   𝑦1 = +1,   𝛼1 = 1.0  𝒙𝟐 = [
0

−3
−1

],   𝑦2 = −1,   𝛼2 = 0.7 

𝒙𝟑 = [
2
0
2

],   𝑦3 = +1,   𝛼3 = 0.5  𝒙𝟒 = [
1

−1
0

],   𝑦4 = −1,   𝛼4 = 0.8 

 

𝐰 = ∑ αiyi𝐱i

i

       𝒘𝟐 = 1 × [
1
1
0

] − 0.7 × [
0

−3
−1

] + 0.5 × [
2
0
2

] − 0.8 × [
1

−1
0

]

= [
1 + 0 + 1 − 0.8

1 + 2.1 + 0 + 0.8
0 + 0.7 + 1 + 0

] = [
𝟏. 𝟐
𝟑. 𝟗
𝟏. 𝟕

] 

 

 

 

(c)  𝒙𝟏 = [
−3
−1
4

],   𝑦1 = +1,   𝛼1 = 1.0  𝒙𝟐 = [
2
3

−1
],   𝑦2 = −1,   𝛼2 = 0.7 

𝒙𝟑 = [
−4
−2
1

],   𝑦3 = +1,   𝛼3 = 0.5  𝒙𝟒 = [
3
1
0

],   𝑦4 = −1,   𝛼4 = 0.8 

 

𝐰 = ∑ αiyi𝐱i

i

       𝒘𝟑 = 1 × [
−3
−1
4

] − 0.7 × [
2
3

−1
] + 0.5 × [

−4
−2
1

] − 0.8 × [
3
1
0

]

= [
−3 − 1.4 − 2 − 2.4
−1 − 2.1 − 1 − 0.8
4 + 0.7 + 0.5 + 0

] = [
−𝟖. 𝟖
−𝟒. 𝟗
𝟓. 𝟐

] 

 

 

 



6. List two useful applications for logarithms in Machine Learning (they can be either practical 

engineering uses or mathematical derivation uses). 

 

Application 1: using logarithms can make differentiation easier for derivation of learning rules. 

Application 2: using logarithms results in multiplied probabilities not being rounded to 0, e.g., 

probability of 0.000000004 would be rounded to 0 by a computer but log(prob)=-8.4 , won’t be 

rounded to 0. 

 

7. For the following functions, set the derivative with respect to h to 0: 

 

(a) 

f(h) = 
h2−3

5x3   (Presume x ≠ 0) 

 
2h

5x3 = 0     -> h=0  

 

 

(b) 

f(h) = ∏ 5h2ie−3h
𝑖  

 

Take log, then apply derivative 

log(f(h)) = ∑ (log 5 + 2i log h − 3h)i   -> ∑ (
2𝑖

ℎ
) − 3𝑖 = 0 

       ∑ 2ii − 3h = 0 

       
∑ 𝟐𝐢𝐢

𝟑
= 𝐡 

 

 

8. Compute AIC given the following log-likelihoods and number of parameters 

AIC: log(L) - k 

 

(a) log(L)=-42   # params= 12 

-42+12 = -30 

-42-12 = -54 

 

(b) log(L)=-44   # params= 9 

-44+9 = -35 

-44-9 = -53 

 

(c) log(L)=-33   # params=10 

-33+10 = -23 

-33-10 = -43 



 

9. Let us define a logistic regression classifier with initial weight w0=[1.2 -2.3 0.5]. 

 

Let us begin by optimizing for “maximum likelihood”, i.e., assuming no prior constraints. 

Also, assume 𝜀 = 0.01 

 

𝒘𝒏𝒆𝒘 ← 𝒘𝒐𝒍𝒅 + 𝜀𝒙𝒋
𝒊 (𝑦𝑖 − 𝑔(𝒘𝑻𝒙𝒊)) 

Note: showing your work allows you to get partial credit if you make a mistake! 

You will receive the majority of points by following the correct process. 

 

What will be the update to w0 if we see the data point: 

x1=[3 2 1], y1=1 

Compute 𝒘𝑻𝒙𝟏 = [1.2 −2.3 0.5] [
3
2
1

] = 3.6 − 4.6 + 0.5 = −0.5 

Compute 𝑔(𝒘𝑻𝒙𝟏) = 𝑔(−0.5) =
1

1+𝑒+0.5 ≈ 0.38 

𝒘𝟏
𝒏𝒆𝒘 ← 𝒘𝟏

𝒐𝒍𝒅 + 𝜀𝒙𝟏
𝒊 (𝑦𝑖 − 𝑔(𝒘𝑻𝒙𝒊)) = 1.2 + 0.01 × 3 × (1 − 0.38) = 1.2 + 0.01 × 3 × 0.62

= 1.2 + 0.0186 ≈ 1.22 

𝒘𝟐
𝒏𝒆𝒘 ← 𝒘𝟐

𝒐𝒍𝒅 + 𝜀𝒙𝟐
𝒊 (𝑦𝑖 − 𝑔(𝒘𝑻𝒙𝒊)) = −2.3 + 0.01 × 2 × (1 − 0.38)

= −2.3 + 0.01 × 2 × 0.62 = −2.3 + 0.0122 ≈ −2.29 

𝒘𝟑
𝒏𝒆𝒘 ← 𝒘𝟑

𝒐𝒍𝒅 + 𝜀𝒙𝟑
𝒊 (𝑦𝑖 − 𝑔(𝒘𝑻𝒙𝒊)) = 0.5 + 0.01 × 1 × (1 − 0.38) = 0.5 + 0.01 × 1 × 0.62

= 0.5 + 0.0062 ≈ 0.51 

Final answer: 𝒘𝒏𝒆𝒘 = [
𝟏. 𝟐𝟐

−𝟐. 𝟐𝟗
𝟎. 𝟓𝟏

] 

  



 

What will be the update to w0 if we see the data point: 

x1=[3 2 1], y1=0 

𝒘𝒏𝒆𝒘 ← 𝒘𝒐𝒍𝒅 + 𝜀𝒙𝒋
𝒊 (𝑦𝑖 − 𝑔(𝒘𝑻𝒙𝒊)) 

 

Compute 𝒘𝑻𝒙𝟏 = [1.2 −2.3 0.5] [
3
2
1

] = 3.6 − 4.6 + 0.5 = −0.5 

Compute 𝑔(𝒘𝑻𝒙𝟏) = 𝑔(−0.5) =
1

1+𝑒+0.5
≈ 0.38 

𝒘𝟏
𝒏𝒆𝒘 ← 𝒘𝟏

𝒐𝒍𝒅 + 𝜀𝒙𝟏
𝒊 (𝑦𝑖 − 𝑔(𝒘𝑻𝒙𝒊)) = 1.2 + 0.01 × 3 × (0 − 0.38) = 1.2 − 0.01 × 3 × 0.38

= 1.2 − 0.0114 ≈ 1.19 

𝒘𝟐
𝒏𝒆𝒘 ← 𝒘𝟐

𝒐𝒍𝒅 + 𝜀𝒙𝟐
𝒊 (𝑦𝑖 − 𝑔(𝒘𝑻𝒙𝒊)) = −2.3 + 0.01 × 2 × (0 − 0.38)

= −2.3 − 0.01 × 2 × 0.38 = −2.3 − 0.0075 ≈ −2.31 

𝒘𝟑
𝒏𝒆𝒘 ← 𝒘𝟑

𝒐𝒍𝒅 + 𝜀𝒙𝟑
𝒊 (𝑦𝑖 − 𝑔(𝒘𝑻𝒙𝒊)) = 0.5 + 0.01 × 1 × (0 − 0.38) = 0.5 − 0.01 × 1 × 0.38

= 0.5 − 0.0038 ≈ 0.5 

Final answer: 𝒘𝒏𝒆𝒘 = [
𝟏. 𝟏𝟗

−𝟐. 𝟑𝟏
𝟎. 𝟓

] 

 

 

 

What will be the update to w0 if we see the data point: 

x1=[1 2 3], y1=1 

𝒘𝒏𝒆𝒘 ← 𝒘𝒐𝒍𝒅 + 𝜀𝒙𝒋
𝒊 (𝑦𝑖 − 𝑔(𝒘𝑻𝒙𝒊)) 

 

Compute 𝒘𝑻𝒙𝟏 = [1.2 −2.3 0.5] [
1
2
3

] = 1.2 − 4.6 + 1.5 = −1.9 

Compute 𝑔(𝒘𝑻𝒙𝟏) = 𝑔(−1.9) =
1

1+𝑒+1.9 ≈ 0.13 

𝒘𝟏
𝒏𝒆𝒘 ← 𝒘𝟏

𝒐𝒍𝒅 + 𝜀𝒙𝟏
𝒊 (𝑦𝑖 − 𝑔(𝒘𝑻𝒙𝒊)) = 1.2 + 0.01 × 1 × (1 − 0.13) = 1.2 + 0.01 × 1 × 0.87

= 1.2 + 0.0087 ≈ 1.21 

𝒘𝟐
𝒏𝒆𝒘 ← 𝒘𝟐

𝒐𝒍𝒅 + 𝜀𝒙𝟐
𝒊 (𝑦𝑖 − 𝑔(𝒘𝑻𝒙𝒊)) = −2.3 + 0.01 × 2 × (1 − 0.13)

= −2.3 + 0.01 × 2 × 0.87 = −2.3 + 0.0174 ≈ −2.28 

𝒘𝟑
𝒏𝒆𝒘 ← 𝒘𝟑

𝒐𝒍𝒅 + 𝜀𝒙𝟑
𝒊 (𝑦𝑖 − 𝑔(𝒘𝑻𝒙𝒊)) = 0.5 + 0.01 × 3 × (1 − 0.13) = 0.5 + 0.01 × 3 × 0.87

= 0.5 + 0.0261 ≈ 0.53 

Final answer: 𝒘𝒏𝒆𝒘 = [
𝟏. 𝟐𝟏

−𝟐. 𝟐𝟖
𝟎. 𝟓𝟑

] 

 



 

What will be a potential effect of decreasing 𝜀. 

 

Decreasing 𝜺 will decrease the amount each element of the weight matrix is updated for each 

new data point. 

 

 

 

 

 

How will we change the optimization process if we include L2 regularization? 

Two possible interpretations to this question. Based on my question phrasing, either 

interpretation is valid: 

The technical answer: We add −
𝒘𝒋

𝝀
 during weight updates 

The “big picture” answer: Prevents magnitude of weights in any feature dimension from 

growing too large. 

 

 

 

 

We are trying to determine the probability that Microsoft stock will go up (M=yes) based on the 

following yes/no features: 

Recent increase in laptop sales (L=yes) 

Recent increase in silicon price (S=yes) 

Recent decrease in rain in Seattle, Washington (R=yes) 

 

For the rest of this section: Let us assume R is independent of L and S, given M. However, 

Assume L and S are NOT independent given M. 

 

Write the expression for the likelihood of L, S, and R, given M. Simplify the expression by 

including the fewest number of variables possible in each probability term.  

Complex likelihood: P(L,S,R|M) 

Simplified likelihood: P(L,S|M) P(R|M) 

 

  



Let us say we have the following data from past days. Y means yes, N means no and ? means 

“data not available.” Whenever data is unavailable for a given feature, it is not used in 

estimating probabilities relating to that feature. For example, the first data point: 

 

   L    S    R    M 

Day 1:    Y    ?    N    Y 

 

can be used in the estimation of P(L=yes) and P(M=yes | R=no), but it cannot be used in the 

estimation of P(L=yes,S=yes|M=yes) 

 

Data: 

   L    S    R    M 

Day 1:    Y    ?    N    Y 

Day 2:    Y    Y    N    N 

Day 3:    ?    Y    N    Y 

Day 4:    ?    ?    Y    N 

Day 5:    N   N    ?    Y 

Day 6:    N    ?    ?    Y 

Day 7:    Y    ?    Y    Y 

Day 8:    ?    N    Y    Y 

 

Which of the probabilities below have Maximum Likelihood Estimate of 0? What are the non-

zero values? 

 

P(M=yes) 

Count M=yes and all available M data points 
6

8
= 𝟎. 𝟕𝟓  

 

 

 

 

 

 

 

 

P(L=yes,S=yes|M=no) 

Count all data points where L=yes and S=yes and M=no, 

Count all data points where data available for L and S, and where M=no 
1

1
= 𝟏  

 



 

 

 

P(L=no,S=no,R=yes|M=yes) 

Due to independence of R, P(L,S,R|M) is calculated as P(L,S|M) x P(R|M) 

 

P(R=yes|M=yes): Count number of data points where R=yes and M=yes, count number of data 

points for R and M where M=yes 

P(R=yes|M=yes) = 
2

4
= 0.5 

 

P(L=no,S=no|M=yes): Count number of data points where L=no, S=no, and M=yes, count 

number of data points for L, S, and M where M=no 

P(L=no,S=no|M=yes) = 
1

1
= 1 

 

P(L=no,S=no,R=yes|M=yes) = P(L=no,S=no|M=yes) x P(R=no|M=yes) = 1x0.5 = 0.5 

 

 

 

 

 

 

 

 

 

P(L=no,S=yes|M=yes) 

P(L=no,S=yes|M=yes)=0 … no data points for L=no, S=yes, and M=no at the same time 

 

 

 

 

To calculate the a posteriori probability of P(L=no,S=no|M=yes), how do we incorporate a prior 

belief that there is a 20% chance Microsoft stock will fall or stay the same? 
#𝑫(𝑳=𝒏𝒐⋀𝑺=𝒏𝒐⋀𝑴=𝒚𝒆𝒔+𝟖𝟎

#𝑫(𝑴=𝒚𝒆𝒔)+𝟏𝟎𝟎
 … i.e., add 𝜷𝒓𝒊𝒔𝒆 = 𝟖𝟎 and 𝜷𝒇𝒂𝒍𝒍_𝒐𝒓_𝒔𝒕𝒂𝒚_𝒔𝒂𝒎𝒆 = 𝟐𝟎 

 

 

 

Let us consider a binary classification problem. For several objects in an online store, we wish to 

train a classifier to predict the label: “Does this object make people happy?” (variable 

H={yes,no}) We will use five features:  



How big is it? 

How old is it? 

How expensive is it? 

How familiar is it? 

How natural is it? 

 

Each feature will take on an integer value from 1 to 10, inclusive. 

 

Assuming all features are independent, how many parameters must be learned for the 

classifier? 

2 × 5 × (10 − 1) = 2 × 5 × 9 = 𝟗𝟎 

 

 

 

 

 

 

 

How many features do we learn if we wish to categorize each object into three different “make 

people happy” classes (including scores 1 – really makes people sad, 2 – neutral in affecting 

happiness, and 3 – really makes people happy). 

3 × 5 × (10 − 1) = 3 × 5 × 9 = 𝟏𝟑𝟓 

 

 

 

 

  



Let us assume a single-feature data set in which each data point comes from one of two 

distributions: 

For class 0: a uniform distribution starting x and ending x =a, 𝑓(𝑥) = {
1

𝑎
    0 ≤ 𝑥 ≤ 𝑎

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Class 1: a triangle distribution, starting at x=0 and ending at x=b:  

ℎ(𝑥) = {
2

𝑏
(1 −

𝑥

𝑏
)     0 ≤ 𝑥 ≤ 𝑏

        0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Given N data points (xi,yi) in a training set, what is the formula for the likelihood, given the 

parameters a and b?  (You may express your answer in terms of f(x) and h(x).) 

 

𝑃(𝐷|𝜃) = ∏ 𝒇(𝒙)(𝟏−𝒚𝒊)𝒉(𝒙)𝒚𝒊

𝑵

𝒊=𝟏

 

 

 

 

 

 

 

 

 

 

 

 

 

Assuming all data points are positive, what is the maximum likelihood estimate for a and b? 

Calculus will not help you here. You actually have to use your intuition! 

The value for a should be the maximum value of all xi such that yi=0, i.e., 𝒂 = 𝐦𝐚𝐱(𝒙𝒊)(𝟏−𝒚𝒊) 

This ensures 1/a is as large possible while 𝑥𝑖 ≤ 𝑎 for all xi in class 0. 

 

The value for b should be the maximum value of all xi such that yi=1, i.e., 𝒃 = 𝐦𝐚𝐱(𝒙𝒊)𝒚𝒊
 

This ensures 
2

𝑏
(1 −

𝑥

𝑏
) is as large possible while 𝑥𝑖 ≤ 𝑏 for all xi in class 1. 

 

 

 

 

 



Consider points below and select four as likely support vectors for a linear separator. Draw your 

estimate of the separator and calculate the w value, assuming all support vectors have alpha=1. 

 

 
 

𝒘 = ∑ 𝛼𝑖𝒙𝒊𝑦𝑖

𝑖

= +1 × [
1
2

] × 1 + 1 × [
3

−1
] + 1 × [

−2
−1

] × −1 + 1 × [
0

−3
] × −1

= [
1 + 3 + 2 + 0
2 − 1 + 1 + 3

] = [
𝟔
𝟓

] 

 

 

 

 

 

 

 

 

 

 

What is the purpose of a slack variable? 

The slack variable is used to control the degree of penalty given for mis-classified data points 

while learning a linear separator in an SVM. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Suggest the two classification methods from the list below most fitting the following data: 

 

 

   
 

 

Bayes classifier 

Logistic classifier 

Linear SVM 

Kernel SVM (i.e., SVM with dimension mapping function) 

SVM with slack variables 

 

 

Left hand plot: 

Bayes classifier 

Kernel SVM 

 

 

 

 

 

 

 

 

 

Right hand plot: 

Bayes classifier 

SVM with slack variables 

 

 

 



 

 

What is overfitting? What are potential causes? 
Overfitting is caused by over-learning classifier parameters based on training data to focus on 
patterns specific to training data that does not generalize to outside testing data. This leads 
to poor classifier performance on testing sets. 
 
Potential causes are performing too many learning iterations on the same data set, and fitting 
too many parameters to insufficient data. 
 
 
 
 
 
 
We wish to use a Maximum Likelihood Bayesian classifier to determine whether we are at a 
fruit stand (variable F) based on the presence of bananas (variable B), milk (variable M), and 
cash registers (variable C). We assume B, M, and C are all independent of one another given the 
value of F. Based on training data, we have found the following probabilities: 
 
P(B=yes|F=yes) = 0.8  P(M=yes|F=yes)=0.1  P(C=yes|F=yes)=0.7 
P(B=yes|F=no)=0.2  P(M=yes|N=no)=0.5   P(C=yes|F=no)=0.6 
 
We observe cash registers, but no bananas or milk. Does the Maximum Likelihood classifier 
conclude we are in a fruit stand? 
Compute and compare P(C=yes,B=no,M=no|F=yes) and P(C=yes,B=no,M=no|F=no) 
P(C,B,M|F)=P(C|F)P(B|F)P(M|F) 
P(C=yes,B=no,M=no|F=yes)= 0.7 x (1-0.8) x (1-0.1) = 0.7 x 0.2 x 0.9 = 0.126 
P(C=yes,B=no,M=no|F=no)= 0.6 x (1-0.2) x (1-0.5) = 0.6 x 0.8 x 0.5 = 0.24 
P(C=yes,B=no,M=no|F=no)> P(C=yes,B=no,M=no|F=yes)  We ARE NOT at a fruit stand 
 
 
We observe bananas, but no milk or cash registers. Does the Maximum Likelihood classifier 

conclude we are in a fruit stand? 

Compute and compare P(B=yes,M=no,C=no|F=yes) and P(B=yes,M=no,C=no|F=no) 
P(B,M,C|F)= P(B|F)P(M|F)P(C|F) 
P(B=yes,M=no,C=no|F=yes)= 0.8x (1-0.1) x (1-0.7) = 0.8 x 0.9 x 0.3 = 0.216 
P(B=yes,M=no,C=no|F=no)= 0.2x(1-0.5) x (1-0.6) = 0.2 x 0.5 x 0.4 = 0.04 
P(B=yes,M=no,C=no|F=yes)> P(B=yes,M=no, C=no|F=no)  We ARE at a fruit stand 
 


