
Machine Learning CISC 5800 Dr Daniel Leeds

What is machine learning

- Finding patterns in data
- Adapting program behavior

2

What's covered in this class

- Theory: describing patterns in data
 - Probability
 - · Linear algebra
 - Calculus/optimization
- Implementation: programming to find and react to patterns in data
 - Popular and successful algorithms
 - Matlab (or Python)
 - Data sets of text, speech, pictures, user actions, neural data...

Outline of topics

- Groundwork: probability and slopes
- Classification overview: Training, testing, and overfitting
- Basic classifiers: Naïve Bayes and Logistic Regression
- Advanced classifiers: Neural networks and support vector machines

Deep learning Kernel methods

- Dimensionality reduction: Feature selection, information criteria
- Graphical models: Bayes Nets and Hidden Markov Model
- Expectation-Maximization

What you need to do in this class

- Class attendance
- Assignments: homeworks (4) and final project
- Exams: midterm and final
- · Don't cheat
 - You may discuss course topics with other students, but your submitted work must be your own. Copying is not allowed.

Resources

- Office hours: Wednesday 4-5pm and by appointment
- Course web site: http://storm.cis.fordham.edu/leeds/cisc5800
- Fellow students
- Textbooks/online notes

• Matlab

Andrew Ng's Stanford course notes

9

Probability and basic calculus

Probability and basic calculus

P(A) means "Probability that statement A is true"

Probability

What is the probability that a child likes chocolate?

- Ask 100 children
- Count who likes chocolate
- Divide by number of children asked

P("child likes chocolate") =	$\frac{85}{100} = 0.85$
------------------------------	-------------------------

In short: P(C)=0.85

C="child likes chocolate"

Name

Sarah

Melissa

Darren

Stacy

Brian

No

Yes

No

Chocolate? • 0≤Prob(A) ≤1 Yes Yes

- Prob(True)=1
- Prob(False)=0

General probability properties

Random variables

A variable can take on a value from a given set of values:

- {True, False}
- {Cat, Dog, Horse, Cow}
- {0,1,2,3,4,5,6,7}

A random variable holds each value with a given probability Example: **binary variable** LikesChocolate

• P(LikesChocolate) = P(LikesChocolate=True) = 0.85

4

C="child likes chocolate"

Complements

P("child likes chocolate") = $\frac{85}{100}$ = 0.85

What is the probability that a child DOES NOT like chocolate?

Complement: C' = "child doesn't like chocolate"

$$P(C') = P(C=false) = .15$$

All children (the full "sample space")

In general: P(A') = 1-P(A)

15

Joint probabilities

C="child likes chocolate" I="child likes ice cream"

Across 100 children:

• 55 like chocolate AND ice cream

P(I=True, C=True)=.55

- 30 like chocolate but not ice cream
- 5 like ice cream but not chocolate
- 10 don't like chocolate nor ice cream

P(I=True) =.6 P(C=True) =.85

Marginal and conditional probabilities

For two binary random variables A and B

- P(A) = P(A,B)+P(A,B') = P(A=True, B=True) + P(A=True, B=False)
- P(B) = P(A,B)+P(A',B)

For **marginal probability** P(X), "marginalize" over all possible values of the other random variables

 \bullet Prob(C|I): Probability child likes chocolate given s/he likes ice cream

$$P(C|I) = \frac{P(C,I)}{P(I)} = \frac{P(C,I)}{P(C,I) + P(C',I)}$$

21

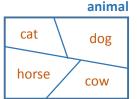
Independence

If the truth value of B does not affect the truth value of A, we say A and B are independent.

- P(A|B) = P(A)
- P(A,B) = P(A) P(B)

Multi-valued random variables

A random variable can hold more than two values, each with a given probability


- P(Animal=Cat)=0.5
- P(Animal=Dog)=0.3
- P(Animal=Horse)=0.1
- P(Animal=Cow)=0.1

Probability rules: multi-valued variables

For given random variable A:

•
$$P(A = a_i \text{ and } A = a_i) = 0 \text{ if } i \neq j$$

• $\sum_{i} P(A = a_i) = 1$

•
$$P(A = a_i) = \sum_j P(A = a_i, B = b_j)$$
 a is a value assignment for

variable A

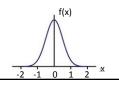
Probability table

• P	(G=C,H=Trι	ле)= 0.15

• P(H=True) =0.75

•	P(G=C H=True)	$=\frac{.15}{.75}$ = 0.2
---	---------------	---------------------------------

• P(H=True | G=C) = $\frac{.15}{.2}$ = **0.75**


Grade	Honor-Student	P(G,H)
Α	False	0.05
В	False	0.05
С	False	0.05
D	False	0.1
Α	True	0.3
В	True	0.2
С	True	0.15
D	True	0.1
		23

Continuous random variables

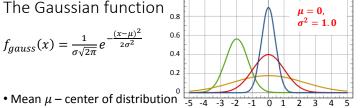
A random variable can take on a continuous range of values

- From 0 to 1
- From 0 to ∞
- From $-\infty$ to ∞

Probability expressed through a "probability density function" f(x)

Common probability distributions

• Uniform: $f_{uniform}(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \leq x \leq b \\ 0 & \text{otherwise} \end{cases}$



• Gaussian: $f_{gauss}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

The Gaussian function os

$$f_{gauss}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

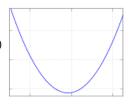
- Standard deviation σ width of distribution
- Which color is μ =-2, σ^2 =0.5? Which color is μ =0, σ^2 =0.2?

•
$$N(\mu_1, \sigma_1^2) + N(\mu_2, \sigma_2^2) = N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Probability and basic calculus

Calculus: finding the slope of a function

What is the minimum value of: $f(x)=x^2-5x+6$

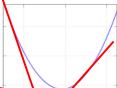

Find value of x where slope is 0

General rules: slope of f(x): $\frac{d}{dx}f(x) = f'(x)$

$$\bullet \frac{d}{dx}x^a = ax^{a-1}$$

$$\bullet \frac{d}{dx}kf(x) = kf'(x)$$

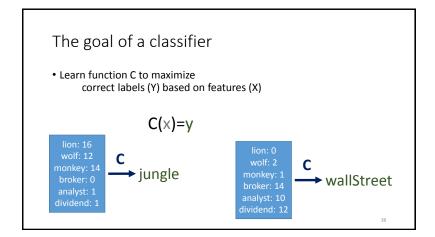
•
$$\frac{dx}{dx}[f(x) + g(x)] = f'(x) + g'(x)$$



Calculus: finding the slope of a function

What is the minimum value of: $f(x)=x^2-5x+6$

- f'(x)=2x-5
- What is the slope at x=5? f'(5)=5
- What is the slope at x=-3? f'(-3)=-11



More on derivatives: $\frac{d}{dx}f(x) = f'(x)$

- $\frac{d}{dx}f(w) = 0$ -- w is not related to x, so derivative is 0
- $\frac{d}{dx}(f(g(x)))=g'(x) \cdot f'(g(x))$

Introduction to classifiers

Giraffe detector

- Label x : height
- Class y : True or False ("is giraffe" or "is not giraffe")

Learn optimal classification parameter(s)

• Parameter: xthresh

Example function:

$$C(x) = \begin{cases} True & \text{if } x > x^{thresh} \\ False & \text{otherwise} \end{cases}$$

Learning our classifier parameter(s) Υ Adjust parameter(s) based on observed data 1.5 True Training set: contains 2.2 True features and corresponding labels 1.8 True 1.2 False 0.9 False

Be careful with your training set

- What if we train with only baby giraffes and ants?
- What if we train with only T rexes and adult giraffes?

Training vs. testing

- Training: learn parameters from set of data in each class
- Testing: measure how often classifier correctly identifies new data
- ullet More training reduces classifier error arepsilon
- Too much training data causes worse testing error overfitting

