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Bayesian classification

CISC 5800
Professor Daniel Leeds

Classifying with probabilities

Example goal: Determine is it cloudy out
* Available data: Light detector: x € [0,25]
* Potential class (atmospheric states): Y={Cloudy, Non-Cloudy}

Each class (atmospheric state) y has 06 f == ot foy oo oo
associated probability distribution P(x) PP S SE N W |

Actually each y has a likelihood distribution o. _/. IR | WURPLUR WRp |
P(x|uy, 0y) N

0.20 T \ :
Classifying with probabilities o {*
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Example goal: Determine is it cloudy out 008 ___[__ [y
0.04 _/-_:r -
* Measure light: x N
0 5 10 15 20 25

* Compute P(xluy, ay) for y=Cloudy and
y=Non-Cloudy

x=9
* Pick y which gives greatest likelihood P(xluy, ay\l - - |

argmax,, P(x|uy, 0y ) P(x=9 | Non-Cloud)=0.02

This is Maximum Likelihood classification

What if there’s an eclipse?

* Let’s add a third potential class:
Y={Cloudy, Non-Cloudy, Eclipse}

* What is most likely class if x=97?
x=9
P(x=9]|Cloudy)=0.12
P(x=9|Non-Cloud)=0.02

| P(x=9]Eclipse)=0.16 |

* Eclipses are low probability!




Incorporating prior probability

* Define prior probabilities for each class P(y) = P(y, 0y)
Probability of class y same as probability of parameters u,, o,

* “Posterior probability” estimated as likelihood X prior :
P(x|uy, Uygp(#y' Uy‘

* Classify as argmaxyP(xluy, ay) P([Jy, ay)

* Terminology: 1, g, are “parameters.” In general use 6
Here: 8y, = {u,, ay} . “Posterior” estimate is P(x|6y) P(Gy)

Probability review: Bayes rule

Recall:  P(AIB) = @
(B)
and: P(4,B) = P(BIA)P(4) The true
posterior
P(B|A) P(A
o P(AIR) = ZEO I |

P(DI6y) P(8y)

Equivalently:  P(y|x) = P(8,|x) = P(6,|D) o)

The posterior estimate

argmax P(0,|D) «< P(D|6,)P(6,)
ay

Posterior o Likelihood x Prior o - means proportional
We “ignore” the P(D) denominator
because D stays same while comparing

different classes (y represented by 6,)

Typical classification approaches

MLE — Maximum Likelihood: Determine parameters/class
which maximize probability of the data
argmax P(D|0y)
9}’

MAP — Maximum A Posteriori: Determine parameters/class
that has maximum probability

argmax P(9y|D)
e)’
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Incorporating a prior

Three classes:
Y={Cloudy, Non-Cloudy, Eclipse}

P(Cloudy)=0.4
P(Non-Cloudy)=0.4
P(Eclipse)=0.2

x=9

IP(x=9[Cloudy) P(Cloud) =0.12x.4 = .048 |
P(x=9|Non-Cloud) P(Non-Cloud) = 0.02x.4 = 0.008
P(x=9 | Eclipse) P(Eclipse)=0.16x.2 = .032

Bernoulli distribution — coin flips

We have three coins with known biases (favoring heads or tails)
How can we determine our current coin?

Flip K times to see which bias it has

Data (D): {HHTH, TTHH, TTTT}  Bias (6,): p, probability of H for coin y

P(D|6y) = (1 = p,)" HI - # heads, |T| -# tails

Bernoulli distribution — reexamined

P(D|9y) lel(l - py)m [H| - # heads, |T| -# tails

0 if tails on flip k
1 if heads on flip k

P(ole,) = | py (1 -p,)" "

More rigorously: in K trials, side;, =

Multinomial example

4-sided die - 4 probabilities:

. — 3
Pside1 Pside2 Pside3s Psides (NOte' Dsides = 1- Zk=1 psidek)

) 1 =0
Define: 5(x) = {0 otZerwise

| | 5(sidep—1) E(SLdek 2)_ 6(sidex—3)_&(sidey—4)
P(D|9}’) stdel szdez pstde3 pSld64—
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Optimization: finding the maximum likelihood
parameter for a fixed class (fixed coin)

arg;nax P(DI|6,) = p, - probability of Head

argmax p3|,H| (1 - py)m
p

Equivalently, maximize log P(D|6,)

argmax |H|logp, + |T| log(l - py)
Py

The properties of logarithms

log(x)

e®=beologh=a

a<beloga<logh
logab =loga + logb

exp(x)

loga™ =nloga

Convenient when dealing with small probabili\tiés‘
*0.0000454 x 0.000912 = 0.0000000414 -> -10+-7 =-17

Optimization: finding zero slope
Location of maximum has slope 0 .

p - probability of Head
maximize log P(D|0)

argmax |H|logp + |T|log(1 — p): i VRN .
P

2 [Hllogp +[T|log(1 —p) = 0

H T
g
p 1-p

Finding the maximum a posteriori
« P(8,|D) x P(D|6,)P(8,)
* Incorporating the Beta prior: 2

0% t(1-9)F~1
B(a.B) '

PDF

P(6) =

argmax P(D|0,)P(6,) =
0

argmaxlog P(D|6,) + log P(6,)
0
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MAP: estimating 6 (estimating p)
argmaxlog P(D|0) + log P(6)
argfnax |H|logp + |T|log(1 —p) +
’ (a—1Dlogp + (B — D log(1 —p) —log(B(a, )
1 Set derivative to 0
[H] 1TI +(06—1)_(!?—1)=

p 1-p 1 1-p

0

A-pIHI-pITI+ A -p)a-1) -p(-1)=0

[Hl +(@a—=1) =(H|+IT|+(@a-D+ (B —-D)p A

Intuition of the MAP result

~ Hl + (e — 1)
By S THI 4 @a—D+IT[+ B -1

* Prior has strong influence when |H| and |T| small
* Prior has weak influence when |H| and |T| large

*a > f means expect to find coins biased to heads
* B > a means expect to find coins biased to tails

Multinomial distribution Classification

* What is mood of person in current minute? M={Happy, Sad}
* Measure his/her actions every ten seconds: A={Cry, Jump, Laugh, Yell}

Data (D): {LLILCY, JJLYIL, CCLLLJ, -m“

JJ1I} Cry 0.1 0.5
Bias (6,): Probability table Jump 03 0.2
Laugh 0.5 0.1
Yell 0.1 0.2
cryn[Cryl, JJumpl ,  paughy|Laugh |vell|
P(Dl6y) = (p,"") (™) (™ (pye")

Multinomial distribution — reexamined

Icryl |Jump| [Laugh|
P(D18,) = (™) () ™) (o™ ) (oY

More rigorously: in K measures,
0 iftrialy, # Action
1 if trial, = Action

i &(trial=Action;)
P(D|9y) = nk 1_L (p;\ctloni) trialp=Action;

Classification: Given known likelihoods for each action, find mood
that maximizes likelihood of observed sequence of actions

8(trial, = Action) = {

(assuming each action is independent in the sequence)
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Learning parameters

#D{A=a;A\M=m}

MLE: P(A = ai|M = mj) = pji' = #D{M=m;}

Yk is prior

MAP: P(A = a;|M =m;) =

#D(M=m;)+%,(Yx—1)

#D(A=a;AM=m,)+(y;-1) probability of each
action class a,

Multiple multi-variate probabilities

Mood based on Action, Tunes,

Weather Cry, Jazz, Sun 0.003 0.102

Cry, Jazz, Rain 0.024 0.025

argmax P(A, T, W|0y) g
0, Cry, Rap, Snow  0.011  0.115

How many entries in probability (augh, Rap, Rain 0.042  0.007

| [Happy [sad |

_ _ #D(M=mp)+(Bj-1)

P(Y = %)) = im0 [y is prior table? :
probability of each Yell, Opera, Wind 0.105  0.052
mood class m, # params = |[M|x(|A|x|T|x|W|-1)

Naive bayes: lazz 005 04 Benefits of Naive Bayes
Assuming independence of input features "? 0> 03 . e |¥] is number of
Opera 045 03 Very fast learning and classifying:

argmaxP(A T, W|0y) =

argmaxP(A|9 )P(T|9 )P(W|9y) -m Sun 0.6

Cry 0.1 o5 Rain  0.05
How many entries in Jump 0.3 02 Snow 0.3
probability tables? Laugh 0.5 0.4 Wind 0.05

Yell 0.1 0.3

|___Happy [sad _

0.2
0.3
0.3
0.2

ot params = |[M|x((|A]-1)+(| T]-1)+(]W|-1)) = 2x(3+2+3)=16

possible classes
* For rr:ult'lnomlal problem: |X,] is number of
* Naive independence: learn |Y| x Y,;(|X;| — 1) possible values for ith
parameters feature

* Non-naive: learn |Y| x ([];|Xj| — 1) parameters

Often works even if features are NOT independent




Typical Naive Bayes classification

argmax P(0y|D) — argmax P(D|0y)P(0y) P(By) prior class probability
93’ 9)’

xl

: | is a list of feature values
x‘l’l
e.g., x}=Action, x2=Tunes

p(pl6,) =TI1;P(x'|0,) where D =

NB (Naive Bayes): Find class y with 6, to maximize P(0y|D)
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