P(letter₁ | word="duck")

letter₁ "a"

"b"

"c"

"d"

0.001

0.010

0.005

0.950

Bayesian Networks

CISC 5800 Professor Daniel Leeds

Approaches to learning/classification

For classification, find highest probability class given features

- P(x₁,...,x_n|y=?)
- Approaches:
- Learn/use function(s) for probability
 P(light|Y=eclipse)=N(μ_{eclipse}, σ_{eclipse})
- Learn/use probability look-up table for each combination of features:

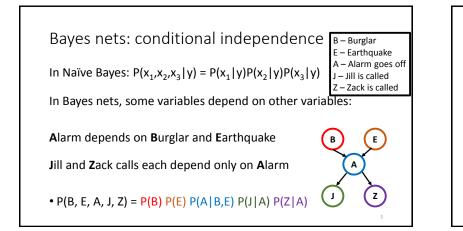
Joint probability over N features

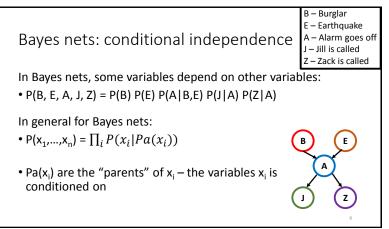
Problem with learning table with N features:

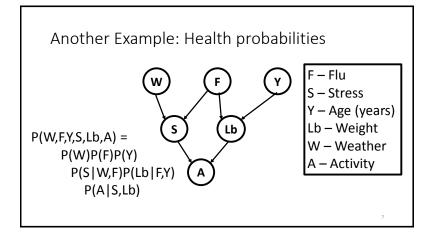
• If all dependent, exponential number of model parameters

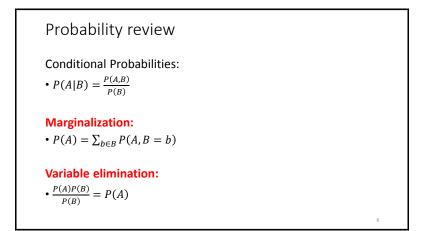
Burglar breaks in	Alarm goes off	Jill gets call	Zack gets call	P(A,J,Z B)
Υ	Y	Y	Y	0.3
Y	Υ	Υ	Ν	0.03
Y	Υ	Ν	Y	0.03
Y	Υ	Ν	Ν	0.06
		:		3

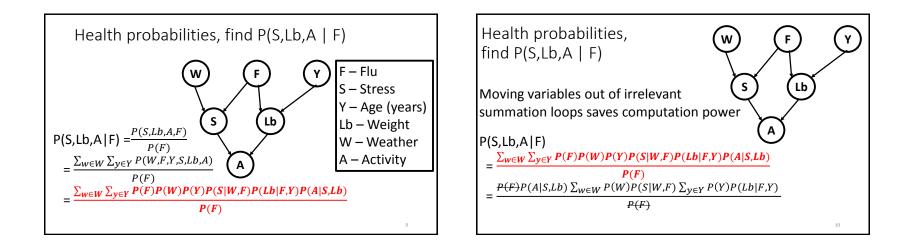
Joint probability over N features Naïve Bayes – all independent • Linear number of model parameters What if only **some** features are independent? $\frac{y_{1}}{y_{1}} \frac{y_{1}}{y_{1}} \frac{y_{1}}{y_{1}} \frac{y_{2}}{y_{1}} \frac{z_{ack} gets}{y_{1}} \frac{p(A,J,Z[B)}{0.3}}{\frac{y_{1}}{y_{1}} \frac{y_{1}}{y_{1}} \frac{y_{1}}{y_{1}} \frac{y_{2}}{y_{1}} \frac{z_{ack}}{y_{1}} \frac{z_{ack}}{y_{1}}$

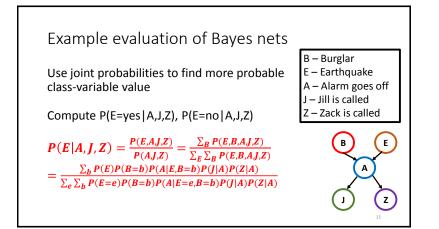




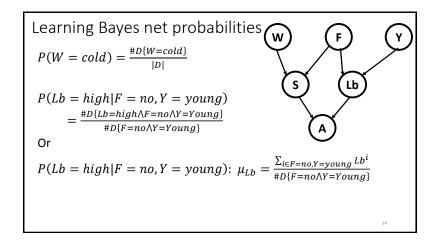


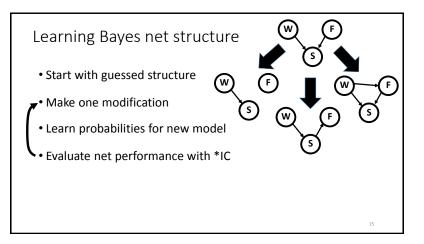


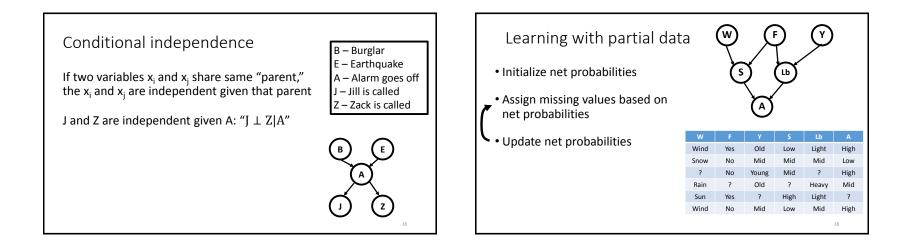




Speeding up Bayes inference	D – Duck
P(D S=yes,F=no): ~118 operations	F – Flies
Multiply probabilities of listed variables and any divide lookup) divide lookup)	S – Swims T – Turtle
$\frac{P(D,S=y,F=n)}{P(S=y,F=n)} = \frac{\sum_t \sum_w P(S=y D,T=t)P(F=n D,W=w,T=t)P(D)}{\sum_t \sum_w \sum_d P(S=y D=d,T=t)P(F=n D=d,W=w,T=t)P(D=d)}$	W – Water
Avoid repeat table look-ups $= \frac{P(D) \sum_{t} P(S=y D,T=t) \sum_{W} P(F=n D,W=w,T=t)}{\sum_{d} P(D=d) \sum_{t} P(S=y D=d,T=t) \sum_{W} P(F=n D=d,W=w,T=t)} D$ $= \frac{f(D)}{\sum_{d} f(d)} $ where total (add, multiply, divide lookup) f(d) = P(D = d) \sum_{t} P(S = y D = d, T = t) \sum_{W} P(F = n D = d, W = w, T = t)	





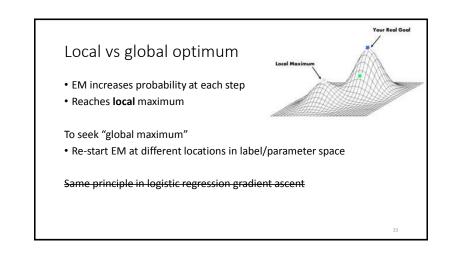


Document classification example **Expectation-Maximization** Problem: Uncertain of y^i (class), uncertain of θ^i (parameters) Two classes: {farm, zoo} Solution: Guess yⁱ, deduce θ^i , re-compute yⁱ, re-compute θ^i ... • 5 labeled zoo articles, 5 labeled farm articles • 100 unlabeled training articles etc. OR: Guess θ^i , deduce yⁱ, re-compute θ^i , re-compute yⁱ Features: [% bat, % elephant, % monkey, % snake, % lion, Will converge to a solution %penguin] • E step: Fill in expected values for missing variables Logistic regression classifier • M step: Regular MLE given known and filled-in variables Merge knowledge from labeled and unlabeled data

Iterative learning

Learn **w** with labeled training data Use classifier to assign labels to originally unlabeled training data Learn **w** with known and newly-assigned labels Use classifier to re-assign labels to originally unlabeled training data

Converges to a stable answer



Types of learning

Supervised: each training data point has known features and class label

• Most examples so far

Unsupervised: each training data point has known features, but no class label

 ICA – each component meant to describe subset of data points

Semi-supervised: each train data point has known features, but only some have class labels

• Related to expectation maximization

24