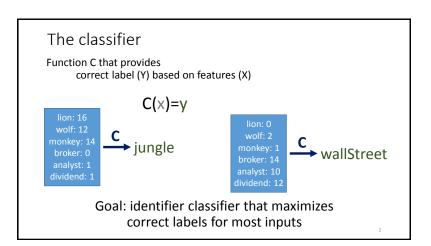
Learning Theory

CISC 5800 Professor Daniel Leeds



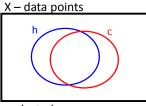
Sample complexity

How many training examples needed to learn concept?

- X set of data points
- P(X) Probability of drawing data point x
- H space of hypotheses H = {h : X -> classes }
- C correct assignment $C = \{c : c(x) = y \ \forall x \in X \}$

Probability of error

 $H = \{h : X \rightarrow \{0,1\}\}$



True error of h: probability randomly selected data point from P(X) misclassified

$$error_{true}(h) = Pr_{x \sim P(X)}[h(x) \neq c(x)]$$

• Hard to compute, but can prove properties of error_{true}

4

Example: Learner picks one of fixed number of classifiers $h \in H$

Correct classifier c is some assignment of each x to a label

How many training points m needed for $error_{true}(h) < \varepsilon$? $Prob[error_{true}(h) \le \varepsilon] = 1-\delta$

"Probability learned classifier h has worse than arepsilon error is 1- δ "

"Probably Approximately Correct Learning" – PAC Learning Binary example: sample complexity

Note for $\varepsilon = [0,1]$, $(1 - \varepsilon) \le e^{-\varepsilon}$

What is the chance learned h is bad but classifies training data correctly? If $error_{true}(h) > \varepsilon$:

- Prob [h correctly labels x^1] < $(1 \varepsilon) \le e^{-\varepsilon}$
- Prob [h correctly labels \mathbf{x}^1 and \mathbf{x}^2 ... and \mathbf{x}^m] < $(1-\varepsilon)^m \le e^{-m\varepsilon}$

If classifier picks one h* randomly from H

• Prob[h* is bad] = Prob[h₁ bad] + ... Prob[h_n bad] = Prob[error_{true}(h*)> ε] < |H| $e^{-m\varepsilon}$

Valiant, 1984

Binary example: sample complexity

Number of data points to reduce chance of false classification, enforce

Prob[error_{true}(h) $\leq \varepsilon$] = 1- δ

Prob[error_{true}(h*)> ε] < |H| $e^{-m\varepsilon} < \delta$

Valiant, 1984

VC Dimensions

If H not finite, PAC result seems to require ∞ data points

Overly conservative

"Dichotomy" – division of set of points S into two subsets

• "Shattering" – set of points is **shattered** by H iff there exists heH associated with every possible dichotomy

Vapnik-Cheronenkis dimension **VC(H)** is size of largest finite subset of X that can be shattered by H

PAC result with infinite H

VC(H) is size of largest finite subset of X that can be shattered by H

- d=VC(H)• $m \ge O\left(\frac{1}{\varepsilon}\left[d\log\frac{1}{\varepsilon} + \log\frac{1}{\delta}\right]\right)$