
Homework 3
Parts A and B due in class April 3, 2019

Part C due online by 11:59pm April 7, 2019

A. Component analysis:
1. Convert the following vectors in (a), (b), and (c) to be unit vectors, each pointing in the

direction of the original vector. (For example, [
2

−4
], [

8
−16

], and [
0.4

−0.8
] are all non-unit vectors

and all point in the same direction.)

(a)

[

1
0

−1
2
1]

 (b)

[

−4
0
0
2

−4]

 (c)

[

2
0

−3
1

−1]

2. For each of the following data sets (set A and set B), provide the top two principal
components and the top one or two independent components (if there are two clear
independent components, you must provide both). Express each component as a 2-element

vector [
𝑛𝑢𝑚1
𝑛𝑢𝑚2

].

You may print out this page and draw arrows for partial credit. The vector estimate of each
component should be estimated to the nearest tenth. E.g., for the following data, we may have
a direction as a roughly horizontal arrow

Roughly estimated as: 𝒅𝒊𝒓 ≈ [
3.0
0.5

] or 𝒖 ≈ [
1.0
0.2

]

Set A: Set B:

3.
We can reconstruct an estimate of data point 𝒙 using components u and their corresponding
weights z

�̃� = ∑𝑧𝑞𝒖
𝑞

𝑞

where �̃� is the estimate of 𝒙. However, the reconstruction will be inaccurate. A standard
measure of inaccuracy between an original data vector 𝒙 and the estimated version of this
vector �̃� is called “mean squared error”:

𝐸(𝒙, �̃�) = ∑(𝑥𝑗 − 𝑥�̃�)
2

𝑗

If our original data point is

[

2
0

−1
2
0]

 and our estimate is

[

1.8
0.5

−0.8
2.3

−0.3]

, the error will be

(2 − 1.8)2 + (0 − 0.5)2 + (−1 + 0.8)2 + (2 − 2.3)2 + (0 + 0.3)2 =

0.22 + 0.52 + 0.22 + 0.32 + 0.32 = 0.04 + 0.25 + 0.04 + 0.09 + 0.09: E=0.51

Data for Question 3:
We have the following components:

𝒖1 = [

0.4
0.7
0.4
0.4

] , 𝒖2 = [

0.6
−0.8

0
0

] , 𝒖3 = [

0.4
0
0

−0.9

]

For each data point, we have three corresponding reconstruction weights:

𝒙𝟏 = [

1.3
0.5
0.4
0

] z1 = 1 z2 = 0 z3 = 2

𝒙𝟐 = [

2.5
−2
0.1
−1

] z1 = 0 z2 = 3 z3 = 1.5

𝒙𝟑 = [

−1.2
0

−0.6
−0.4

] z1 = -1 z2 = -1 z3 = 0

Actual questions:
(a) What are the estimated vectors for x1, x2, and x3 based on the corresponding z values
above?

(b) What is the mean squared error between the estimated and actual data vectors for x1 and
for x3?

(c) Do we expect the components u and weights z in this question are derived from ICA, PCA, or
NMF? Explain your answer (in 1-2 sentences).

4. Presume the following are independent components:

𝒖1 = [

0
0.67
0.67
0.33

] , 𝒖2 = [

0.9
−0.4

0
0.2

] , 𝒖3 = [

0.3
0.9

−0.3
0

]

(a) Which independent component u best describes each of the data points x below? In other
words, which single component can most closely reconstruct each data point below?

(b) What is the corresponding weight zq
i

j for this strongest component?

𝒙1 = [

−1.5
−4.7
1.2
0.2

] 𝒙2 = [

−0.3
3.2
2.9
0.9

] 𝒙3 = [

4.5
3.1

−1.6
−3.1

]

B. Neural networks

1. Let us assume we have a neural network with three layers. Layer 1 has 3 units, layer 2 has 5
units, and layer 3 has a 2 units. There are 8 features fed into the units in layer 1.

(a) Assuming we also have a unit-specific constant bk

m offset for each unit, how many
parameters must we learn for the network as described.

We establish a measurement of “likelihood” derived from the error (r1

3,i-yi)2 . Using this
likelihood measure on a training data set and using additional variables, we observe the AIC for
our current 3-layer neural network model is: -30.5 .

(b) If we add 3 more units to layer 2 and the likelihood remains unchanged, how will the AIC be
affected? (Note AIC uses the natural logarithm, loge.)

2. Presume the following Neural Network, where each unit performs the standard dot product
(weighted sum) and sigmoid transformation.

The following feature values are input: x1=0.5 x2=0.8
The original weights are: 𝑤1,1

1 = −4, 𝑤1,2
1 = 0, 𝑤2,1

1 = 2, 𝑤2,2
1 = 4,

 𝑤1,1
2 = −5, 𝑤1,2

2 = 2,

𝑤1,1
3 = 2, 𝑤2,1

3 = 1

 Assume all b’s are -0.5
Note all initial weights are shown in purple in the diagram above.

(a) Compute the outputs of the 5 units given the input x1=1 x2=0.5

(b) Weight learning:
Assume the desired output for the top (layer 3) units are:

unit 1 output: 0 unit 2 output: 0

Assuming 𝜖 = 10, compute new weight values for the weights below:
𝑤1,1

3 = 𝑤2,1
3 = 𝑤1,1

2 =

Let us now replace the sum-and-sigmoid units in the
current network with linear-rectifier units using the
function to the right.

𝑔(ℎ) = 𝑔(𝑟; 𝑤) = {
 0 𝑤 ∙ 𝑟 ≤ 2
(𝑤 ∙ 𝑟 − 2)

4
 𝑤 ∙ 𝑟 > 2

We wish to calculate a new w update rule to minimize the
error in the output for neuron 2 in layer 3 𝑟2

3 compared to

the desired output 𝑦2 :

𝐸(𝑦;𝑤) = ∑(𝑦𝑖 − 𝑔(𝑟𝑖; 𝑤))
2

𝑗

Use your calculus tools on E(y;w) to compute the gradient ascent update rule for 𝒘𝟐,𝟏
𝟑 .

C. Programming
In this section, you will work on two machine learning approaches – neural network
classification and independent component analysis. There are a total of 6 questions – 2 for
neural nets and 4 for ICA.

To submit Part C, create the directory HW3 inside your private/CIS5800 directory. Leave all
relevant pieces of code in your private/CIS5800/ directory, in file hw3.py .

Your code must be able to run on Python 3. For example, you can test it on erdos as follows.
On erdos terminal:
cd /usr/local/bin/anaconda3/bin

./python3

Then within python you can switch back to your own directory and load your hw2 using:
import os

os.chdir('/u/erdos/students/USERNAME/private/CIS5800/')

import hw2

It is fine if you have tested your code on your own machine, given you are using Python 3.

Before submitting your homework, comment out or delete any additional testing code that I
did not request. If hw3.py includes code to load data sets, comment out this code and any
code that depends on this code before submitting. I should be able to import your hw3.py file
on my computer, where I will import the data files later from a different directory than you
use.

NEURAL NETS
First, you will implement the 3-layer neural network
shown to the right. Each unit computes a weighted sum
and then applies the sigmoid function. You will
represent the weights for each layer in a separate
numpy array – layer1W, layer2W, layer3W. Each row
will correspond to the weights for a single unit. So,
layer1W will have shape [2, 4] – 2 units each taking in
inputs from 3 features plus a constant b offset.

1. Write a function feedforward that takes in the features xi and the network weights, and
outputs the response from layer 3.

Specifically: you will be able to call the function as
 layer3Out=feedforward(x,layer1W,layer2W,layer3W);

x is a numpy array with shape [1,3] containing 3 input features, the layer?W numpy are as
described above. layer3Out will be a single number for the output from layer 3 r1

3 .

Use of matrix mathematics and/or the dot command may help you in this function. You also
may use a sigmoid function you wrote for a previous homework.

Note, the following set of commands will get the following output in Python:

x=[1, 2, 3];

lay1w=np.array([[2, 1, 0, 1],[0 2, 1, 0]]);

lay2w=np.array([[0, -2, 0],[-1 0, 0]]);

lay3w=np.array([1,-1,0]);

out=feedforward (x,lay1w,lay2w,lay3w);

% out will be 0.4624

Now, let us consider a recurrent neural network, where the output of each neuron is
determined by the weighted sum of the inputs from the previous layer and the output of the
neuron from the previous time step:

𝑟𝑘
𝑚,𝑡 = 𝑔 (∑𝑤𝑘,𝑗

𝑚 𝑟𝑗
𝑚−1,𝑡

𝑖

+ 𝑏𝑘
𝑚 + 𝑤𝑘,𝑝𝑎𝑠𝑡

𝑚 𝑟𝑘
𝑚,𝑡−1)

Note the output of neuron k in layer m at time t is denoted as 𝑟𝑘
𝑚,𝑡 – it depends on the inputs

from the neurons at the previous layer at the same time t: 𝑟𝑗
𝑚−1,𝑡 . The output also depends on

the previous output from the same neuron at time point t-1 𝑟𝑘
𝑚,𝑡−1. For each neuron, the

weights stay the same at every time step – it is 𝑤𝑘,𝑗
𝑚 not 𝑤𝑘,𝑗

𝑚,𝑡. Thus, the only change from our

model in lecture is the addition of the neuron’s previous output: +𝑤𝑘,𝑝𝑎𝑠𝑡
𝑚 𝑟𝑘

𝑚,𝑡−1

Note, we assume 𝑟𝑘
𝑚,𝑡=0 = 0 for all neurons and layers at time t=0.

2. Write a function feedforwardRecurrent that takes in the features xi at two or more time
steps and the network weights, and outputs the responses from layer 3 at each time step.

Specifically: you will be able to call the function as
 layer3Out=feedforwardRecurrent(x,layer1W,layer2W,layer3W);

x is a [t, 3] numpy array containing t rows of input features (one for each time point), each with
3 columns of input features. As before, you will represent the weights for each layer in a
separate numpy array – layer1W, layer2W, layer3W. Each row will correspond to the weights
for a single unit. So, layer1W will have shape [2, 5] – 2 units each taking in inputs from 3
features plus the output from unit k at time t-1 plus the constant b offset, e.g., [w1,1

1, w1,2
1,

w1,3
1, w1,PAST

1 , b1
1]. layer3Out will be a numpy array of t numbers for the output from layer 3

r1
3 at each time point.

Note, the following set of commands will get the following output in Python:

xMat=np.array([[1, 2, 3],[2, 0, 1],[3, 1, 0]]);

lay1w=np.array([[2, 1, 0, -2, 1],[0 2, 1, 0, 0]]);

lay2w=np.array([[0, -2, -1, 0],[-1 0, 1, 0]]);

lay3w=np.array([1,-1,3,0]);

out=feedforwardRecurrent(x,lay1w,lay2w,lay3w);

% out will be 0.4624, 0.7724, 0.891

Note also that we assume the output of all neurons is 0 at time t=-1 (the time point prior to
any input being fed in).

Accessing our data
For questions 3-4, the file mnist_train.csv is available on our website (and on erdos using
cp ~dleeds/MLpublic/mnist_train.csv .) It contains pixel representations of
hand-written digits. mnist_train.csv can be loaded with the code:
 import csv

 import numpy

 reader = csv.reader(open("mnist_train.csv", "rb"), delimiter=",")

 reader = csv.reader(open("mnist_train.csv", "rt",encoding='utf8'),

delimiter=",")

 x = list(reader)

 digits = numpy.array(x).astype("float")

Each row contains information for a single digit. The first column has a value between 0 and 9
to indicate the digit. The remaining columns are 784 pixels corresponding to a 28x28 grid
rendering of the hand-written digit. You can view a digit yourself by “reshaping” the vector of
pixel values into a 28x28 grid with the code:
 digitPic= digits[n,1:].reshape((28,28))

This picture can be displayed with the code:
 import matplotlib.pyplot as plt

 plt.imshow(digitPic)

 plt.show()

We are given 40 components u , also referred to as “non-negative factors”. They are provided
in hw3NNfactors.mat in the matrix nnFactors. (See previous homeworks to review how
to load .mat files into Python.) Since these factors are non-orthogonal, computing optimal
component weights z is non-trivial. We will try several approaches to compute component
weights z.

3. Write a function findWeights3 that takes in the features from a single data point xi and the
components u and returns the weights z using the technique specified below

Specifically: you will be able to call the function as
 z=findWeights3(x,uMat);

x is a [1, 784] numpy array containing pixel values for one number-picture and uMat is a
[784,40] numpy array containing a component/factor u in each column. The output will be a
[1,40] numpy array of u weights.

Method for computing z: Use the PCA approach for computing z, 𝑧𝑞
𝑖 = 𝒖𝑞𝑇𝒙𝑖

4. Write a function findWeights4 that takes in the features from a single data point xi and the
components u and returns the weights z using the technique specified below

Specifically: you will be able to call the function as
 z=findWeights4(x,uMat);

x is a [1, 784] numpy array containing pixel values for one number-picture and uMat is a
[784,40] numpy array containing a component/factor u in each column. The output will be a
[1,40] numpy array of u weights.

Method for computing z:
 Initialize all z to 0

 Loop 40 times OR UNTIL highest zq<0

 Find uq with highest dot product with x

 Save this highest magnitude product in zq

 Remove component uq from data point: x <- x – zq uq

 Do not consider this uq in any future loop

5. Write a function xEstimate that takes in the NMF z weights a single data point xi and the
factors/components u and returns the reconstructed/”estimated” original data point xi

Specifically: you will be able to call the function as
 x=xEstimate(z,uMat);

z is a [40, 1] numpy array containing pixel values for one number-picture and uMat is a [784,40]
numpy array containing a component/factor u in each column. The output will be a [784,1]
numpy array of pixel values for the estimated data point x.

6. Report mean-square reconstruction error on the mnist data based on the z weights learned

from findWeights3 and based on the z weights learned from findWeights4 . For this question

alone, you can use any library/package you want to compute the reconstruction errors.

Report the mean-square error for findWeights3 and findWeights4 as comments in hw3.py

For questions 1-5, you may use the numpy commands addressed in the online resources slide,

in this homework, and in all previous homeworks. Additionally, you may use any of the numpy

commands listed below. If the numpy command you want to use is not on any of these lists,

you will have to implement the command yourself.
absolute array concatenate copy dot

exp mean max min multiply

ones power reshape shape sqrt

std T where zeros

