
Machine Learning

CISC 5800 Dr Daniel Leeds

What is machine learning

- Finding patterns in data
- Adapting program behavior

What's covered in this class

- Theory: describing patterns in data
 - Probability
 - · Linear algebra
 - Calculus/optimization
- Implementation: programming to find and react to patterns in data
 - Popular and successful algorithms
 - Python
 - Data sets of text, speech, pictures, user actions, neural data...

Outline of topics

- Groundwork: probability and slopes
- Classification overview: Training, testing, and overfitting
- Basic classifiers: Naïve Bayes and Logistic Regression
- Advanced classifiers: Neural networks and support vector machines

Deep learning Kernel methods

- Dimensionality reduction: Feature selection, information criteria
- Graphical models: Hidden Markov Model
- Expectation-Maximization
- Learning theory

What you need to do in this class

- Class attendance
- Assignments: homeworks (4-5) and final project
- · Exams: midterm and final
- · Don't cheat
 - You may discuss course topics with other students, but your submitted work must be your own. Copying is not allowed.

Resources

Office hours: Wednesday 4-5pm and by appointment LL 610H
 Teaching Assistant: TBA LL 6th floor

• Course web site: http://storm.cis.fordham.edu/leeds/cisc5800

Fellow students

Textbooks/online notes

• Python

Andrew Ng's Stanford course notes

Machine Learning
Autumn 2016

Machine Learning

Probability and basic calculus

Probability and basic calculus

Probability

What is the probability that a child likes chocolate?

- Ask 100 children
- Count who likes chocolate
- Divide by number of children asked

P("child likes chocolate")	= 85	= 0.85
P(child likes chocolate)) = =	= 0.85

In short: P(C=true)=0.85

Name Chocolate?

Sarah Yes
Melissa Yes
Darren No
Stacy Yes
Brian No

C="child likes chocolate"

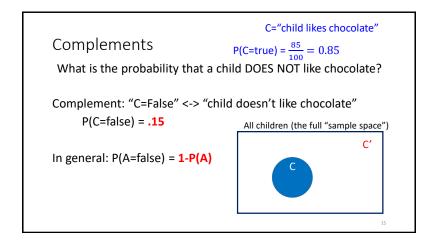
12

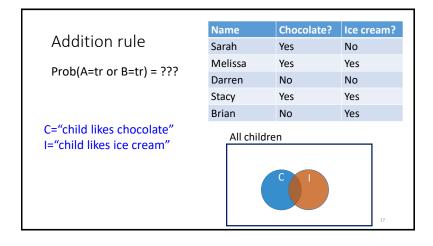
General probability properties

P(A) means "Probability that statement A is true"

- 0≤Prob(A) ≤1
- Prob(True)=1
- Prob(False)=0

Random variables


A variable can take on a value from a given set of values:


- {True, False}
- {Cat, Dog, Horse, Cow}
- {0,1,2,3,4,5,6,7}

A random variable holds each value with a given probability Example: **binary variable** LikesChocolate

• P(LikesChocolate) = P(LikesChocolate=True) = 0.85

14

Joint probabilities

C="child likes chocolate"
I="child likes ice cream"

Across 100 children:

• 55 like chocolate AND ice cream

• 30 like chocolate but not ice cream

• 5 like ice cream but not chocolate

• 10 don't like chocolate nor ice cream

P(I=False, C=True) = .3
P(I=True, C=False) = .05

P(I=True) = .6
P(C=True) = .85

Conditional probability

Also, Multiplication Rule:

P(A,B) = P(A|B) P(B)

P(A,B):Probability A and B are both true

Across 100 children:

- 55 like chocolate AND ice cream P(C=t,I=t)=0.55
- 30 like chocolate but not ice cream P(C=t,I=f) =0.3
- 5 like ice cream but not chocolate P(C=f,I=t) =0.05
- 10 don't like chocolate nor ice cream P(C=f,I=f) =0.1
- Prob(C|I): Probability child likes chocolate given s/he likes ice cream

$$P(C|I) = \frac{P(C,I)}{P(I)} = \frac{P(C,I)}{P(C=true,I) + P(C=false,I)}$$

21

Marginal and conditional probabilities

For two binary random variables A and B

- P(A) = P(A, B=True) + P(A, B=False)
- P(B) = P(A=True,B)+P(A=false,B)

For **marginal probability** P(X), "marginalize" over all possible values of the other random variables

• Prob(C|I): Probability child likes chocolate given s/he likes ice cream

$$P(C|I) = \frac{P(C,I)}{P(I)} = \frac{P(C,I)}{P(C=true,I) + P(C=false,I)}$$

2

Independence

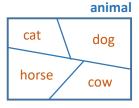
If the truth value of B does not affect the truth value of A, we say A and B are **independent**.

- P(A | B) = P(A)
- P(A,B) = P(A) P(B)

13

Multi-valued random variables

A random variable can hold more than two values, each with a given probability


- P(Animal=Cat)=0.5
- P(Animal=Dog)=0.3
- P(Animal=Horse)=0.1
- P(Animal=Cow)=0.1

Probability rules: multi-valued variables

For given random variable A:

•
$$P(A = a_i \text{ and } A = a_i) = 0 \text{ if } i \neq j$$

• $\sum_i P(A=a_i)=1$

• $P(A=a_i) = \sum_j P(A=a_i, B=b_j)$

 \boldsymbol{a} is a value assignment for variable \boldsymbol{A}

Probability table

- P(G=C,H=True)=0.15
- P(H=True) =0.75
- P(G=C|H=True) = $\frac{.15}{.75}$ = **0.2**
- P(H=True | G=C) = \frac{.15}{.2} = 0.75

-			
	Grade	Honor-Student	P(G,H)
	Α	False	0.05
	В	False	0.05
	С	False	0.05
	D	False	0.1
	Α	True	0.3
	В	True	0.2
	С	True	0.15
	D	True	0.1
			20

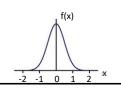
Bayes rule

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Terminology:

- P(A|B) is the "posterior probability"
- P(B|A) is the "likelihood"
- P(A) is the "prior probability"

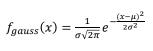
We will spend (much) more time with Bayes rule in following lectures

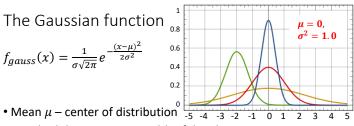

20

Continuous random variables

A random variable can take on a continuous range of values

- From 0 to 1
- From 0 to ∞
- From $-\infty$ to ∞


Probability expressed through a "probability density function" **f(x)**



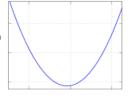
Common probability distributions

- Uniform: $f_{uniform}(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \leq x \leq b \\ 0 & \text{otherwise} \end{cases}$
- Gaussian: $f_{gauss}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

The Gaussian function 0.8

- Standard deviation σ width of distribution
- Which color is μ =-2, σ^2 =0.5? Which color is μ =0, σ^2 =0.2?
- $N(\mu_1, \sigma_1^2) + N(\mu_2, \sigma_2^2) = N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

Probability and basic calculus


Calculus: finding the slope of a function

What is the minimum value of: $f(x)=x^2-5x+6$

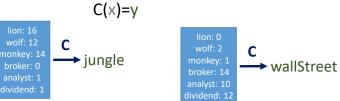
Find value of x where slope is 0

General rules: slope of f(x): $\frac{d}{dx}f(x) = f'(x)$

Calculus: finding the slope of a function

What is the minimum value of: $f(x)=x^2-5x+6$

- f'(x)=2x-5
- What is the slope at x=5? f'(5)=5
- What is the slope at x=-3? f'(-3)=-11
- What value of x gives slope of 0? x=2.5


More on derivatives: $\frac{d}{dx}f(x) = f'(x)$

- $\frac{d}{dx}f(w) = 0$ -- w is not related to x, so derivative is 0
- $\frac{d}{dx}(f(g(x)))=g'(x) \cdot f'(g(x))$

Review of classifiers

The goal of a classifier

• Learn function C to maximize correct labels (Y) based on features (X)

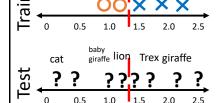
Giraffe detector

- Label x : height
- Class y : True or False ("is giraffe" or "is not giraffe")

Learn optimal classification parameter(s)

• Parameter: xthresh

Example function:

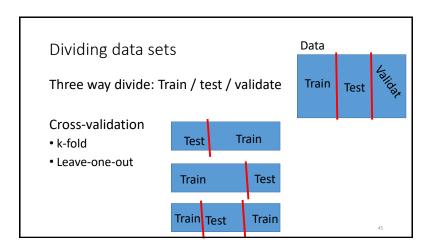

$$C(x) = \begin{cases} True & \text{if } x > x^{thresh} \\ False & \text{otherwise} \end{cases}$$

Learning our classifier parameter(s) Υ Adjust parameter(s) based on observed data 1.5 True Training set: contains 2.2 True features and corresponding labels True **False** 1.2 0.9 False

The testing set

Testing set must be distinct from training set!

• Does classifier correctly label new data?


Example "good" performance: 90% correct labels

42

Be careful with your training set

- What if we train with only baby giraffes and ants?
- What if we train with only T rexes and adult giraffes?

Training vs. testing Training: learn parameters from set of data in each class Testing: measure how often classifier correctly identifies new data More training reduces classifier error ε Too much training data-iterations causes worse testing error – overfitting

What is "good" classifier performance?

How well can you do if:

- You guess randomly?
 - If there are 2 equally likely classes: 0.5 accuracy
 - If there are k classes: 1/k accuracy
- You guess the most-common class?
 - If most common class has P(y) probability: P(y) accuracy
 - Wise to check accuracy for each class separately

47

time spent training