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Dimensionality reduction

CISC 5800

Professor Daniel Leeds

Opening note on dimensional differences
Each dimension corresponds to a feature/measurement

Magnitude differences for each measurement (e.g., animals):

• x1 – speed (mph) 0-100

• x2 – weight (pounds) 10-1000

• x3 – size (feet) 2-20

Problem for learning:

𝑤𝑗 ← 𝑤𝑗 + 𝜀𝑥𝑗
𝑖 𝑦𝑖 − 𝑔(𝑤𝑇𝑥𝑖) −

𝑤𝑗
𝜆

Normalize: 𝑟1 =
𝑥1−𝜇1

𝜎1
or 𝑟1 =

𝑥1−𝑚𝑖𝑛1

𝑚𝑎𝑥1−𝑚𝑖𝑛1
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The benefits of extra dimensions

• Finds existing complex 
separations between 
classes
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The risks of too-many dimensions
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• High dimensions with 
kernels over-fit the 
outlier data

• Two dimensions 
ignore the outlier data
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Training vs. testing

• Training: learn parameters from set of data in each class

• Testing: measure how often classifier correctly identifies new data

• More training reduces classifier error 𝜀
• More gradient ascent steps

• More learned feature 

• Too much training causes 
worse testing error – overfitting

5training epochs
er

ro
r

test

train

Goal: High Performance, Few Parameters

• “Information criterion”: performance/parameter trade-off

• Variables to consider:
• L likelihood of train data after learning

• k number of parameters (e.g., number of features)
• m number of points of training data

• Popular information criteria:
• Akaike information criterion AIC: ln(L) - k

• Bayesian information criterion BIC: ln(L) - 0.5 k ln(m)
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Decreasing parameters

• Force parameter values to 0
• L1 regularization
• Support Vector selection
• Feature selection/removal

•Consolidate feature space
• Component analysis
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Feature removal

• Start with feature set: F={x1, …, xk}

• Find classifier performance with set F: perform(F)

• Loop
• Find classifier performance for removing feature x1, x2, …, xk: 

argmaxi perform(F-xi)
• Remove feature that causes least decrease in performance:

F=F-xi

Repeat, using AIC or BIC as termination criterion
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AIC: ln(L) - k

BIC: ln(L) - 0.5 k ln(m)
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AIC testing: ln(L)-k
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Features k (num features) L (likelihood) AIC

F 40 0.1 -42.3

F-{x3} 39 0.04 -42.2

F-{x3,x24} 38 0.02 -41.9

F-{x3,x24,x32} 37 0.01 -41.6

F-{x3,x24,x32,x15} 36 0.003 -41.8

Feature selection

• Find classifier performance for just set of 1 feature: 
argmaxi perform({xi})

• Add feature with highest performance: F={xi}

• Loop
• Find classifier performance for adding one new feature: 

argmaxi perform(F+{xi})
• Add to F feature with highest performance increase: F=F+{xi}

Repeat, using AIC or BIC as termination criterion
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AIC: ln(L) - k

BIC: ln(L) - 0.5 k ln(m)

Capturing links between features
With large number of features, 
some features xj and xk act similarly

xwolf & xlion -> upredator

xsky & xcloud -> uatmosphere

Approximate 𝒙1 =
𝑥1
1

⋮
𝑥𝑁
1

with 𝒖1 =
𝑢1
1

⋮
𝑢𝑁′
1
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Wolf 12

Lion 16

Monkey 5

Sky 7

Tree 2

Cloud 6
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Automatically learn summary features

Image features

Image as grid of n x m pixels

Find representative component 
features as pixel patterns

13
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Cartoon face example:

Add relevant face components
1000-pixel image becomes 
5 co-efficients

Estimate is fairly close to 
actual image 14

x1

u1 u2 u3

u4 u5

≈ 1 × 𝑢1 + 0 × 𝑢2 + 1 × 𝑢3 + 1 × 𝑢4 + 0 × 𝑢5
Component analysis

Each data point xi in D can be reconstructed as sum 
of components u:

•𝒙𝒊 = σ𝑞=1
𝑇 𝑧𝑞

𝑖𝒖𝑞

•𝑧𝑞
𝑖 is weight on qth component to reconstruct data 

point xi
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Evaluating components

Components learned in order of descriptive power

Compute reconstruction error for all data by using first r 
components:

𝑒𝑟𝑟𝑜𝑟 = σ𝑖 σ𝑗 𝒙𝑗
𝑖 − σ𝑞=1

𝑟 𝑧𝑞
𝑖𝒖𝑗

𝑞
2
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Defining new feature axes

• Identify a common trend

𝒖𝟏 =
0.91
0.45

• Map data onto new dimension u1

17

dim1

dim2
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Defining new feature axes

Project x1 onto u1

𝒖𝟏 =
0.91
0.45

𝒙𝟏 =
−1.19
0.01

For x1: dim1: -1.19

dim2: 0.01

dimU1: u1Tx1 = 
-1.19x.9+.01x.45 =
-1.06
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dim1

dim2

𝒙𝟏

Terminology:
zq – coordinate on 

axis uq

Defining new feature axes

Project x1 onto u1

𝒖𝟏 =
0.91
0.45

𝒙𝟏 =
−1.19
0.01

For x1: dim1: -1.2

dim2: 0

dimU1:
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dim1

dim2

𝒙𝟏

Terminology:
zq – coordinate on 

axis uq

Defining data points with new axes

𝒛1 𝒛2
𝒙𝟏 = −1 × 𝒖𝟏 + (−0.5) × 𝒖𝟐

𝒙𝟐 = 𝟎. 𝟓 × 𝒖𝟏 + (−0.02) × 𝒖𝟐
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𝒙𝟏
𝒙𝟐

dim1

dim2

Component analysis

Each data point xi in D can be reconstructed as sum 
of components u:

•𝒙𝒊 = σ𝑞=1
𝑇 𝑧𝑞

𝑖𝒖𝑞

•𝑧𝑞
𝑖 is weight on qth component to reconstruct data 

point xi

21
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Component analysis: examples

“Eigenfaces” – learned from set of face images

u: nine 
components

x4: data 
reconstructed

23

u1 u2 u3

u7 u8 u9

u4 u6

z1u1+…
+ z9u9 ≈

𝒙𝒊 = ෍

𝑞=1

𝑇

𝑧𝑞
𝑖𝒖𝑞

Types of component analysis

Capture links between features as “components”

•Principal component analysis (PCA)

• Independent component analysis (ICA)

•Non-negative matrix factorization (NMF)
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Principal component analysis (PCA)

Describe every xi with small set of components u1:Q

Use same u1, … uT for all xi

All components orthogonal: 

𝒖𝑖 𝑇𝒖𝑗 = 0 ∀𝑖 ≠ 𝑗
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𝒙𝒊 = ෍

𝑞=1

𝑄

𝑧𝑞
𝑖𝒖𝑞

NOTE: In PCA 𝑧𝑗
𝑖 = 𝒖

𝑗 𝑇
𝒙𝑖

Independent component analysis (ICA)

Describe every xi with small set of 
components u1:Q

Can use different u1, … uQ for each xi

No orthogonality constraint: 

𝒖𝑖 𝑇𝒖𝑗 ≠ 0 ∀𝑖 ≠ 𝑗
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𝒙𝒊 = ෍

𝑞=1

𝑄

𝑧𝑞
𝑖𝒖𝑞
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Idea of learning in PCA
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1. D = {x1,…,xn} , data 0-center

2. Component index: q=1

3. Loop

• Find direction of highest variance: uq

• Ensure |𝒖𝑞| = 1

• Remove uq from data:
𝐷 = 𝒙𝟏 − 𝑧𝑞

1𝒖𝑞 , ⋯ , 𝒙𝒏 − 𝑧𝑞
𝑛𝒖𝑞

𝒖𝒊
𝑇𝒖𝒋 = 0 ∀𝑖 ≠ 𝑗

Thus, we guarantee 𝑧𝑗
𝑖 = 𝒖𝑗

𝑇𝒙𝑖

Non-negative matrix factorization (NMF)

Describe every xi with small set of 
components u1:T

All components and weights 
non-negative 
𝒖𝑖 ≥ 0, 𝑧𝑞

𝑖 ≥ 0 ∀𝑖, 𝑞
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𝒙𝒊 = ෍

𝑞=1

𝑄

𝑧𝑞
𝑖𝒖𝑞

Types of component analysis
Principal component analysis (PCA):

• Minimal components to describe all data

• All components orthogonal: 𝒖𝒊
𝑇𝒖𝒋 = 0 ∀𝑖 ≠ 𝑗

Independent component analysis (ICA):

• Minimize components to describe each data point 𝑥𝑖

• Can focus on different components for different 𝑥𝑖

Non-negative matrix factorization (NMF):

• All data xi non-negative

• All components and weights non-negative 𝒖𝑗 ≥ 0, 𝑧𝑞
𝑖 ≥ 0 ∀𝑖, 𝑞
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𝒙𝒊 = ෍

𝑞=1

𝑄

𝑧𝑞
𝑖𝒖𝒒


