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Learning Theory

CISC 5800

Professor Daniel Leeds

The classifier
Function C that provides

correct label (Y) based on features (X)

C(x)=y
lion: 16
wolf: 12

monkey: 14
broker: 0
analyst: 1

dividend: 1

jungle
C

lion: 0
wolf: 2

monkey: 1
broker: 14
analyst: 10

dividend: 12

wallStreet
C
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Goal: identifier classifier that maximizes 
correct labels for most inputs

Sample complexity

How many training examples needed to learn concept?

• X – set of data points

• P(X) – Probability of drawing data point x

• H – space of hypotheses H = {h : X -> classes }

• C – correct assignment C = {c : c(x) = y ∀xϵX }
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Probability of error

H = {h : X -> {0,1}}

True error of h: probability randomly selected 
data point from P(X) misclassified

errortrue(h) = Prx~P(X) [h(x) ≠ c(x)]

• Hard to compute, but can prove properties of errortrue

4

h c

X – data points
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Example: Learner picks one of fixed number 
of classifiers  ℎ𝜖𝐻

Correct classifier c is some assignment of each x to a label

How many training points m needed for errortrue(h)<𝜀 ?

Prob[errortrue(h)≤ 𝜀] > 1-𝛿

“Probability learned classifier h has worse than 𝜀 error is < 𝛿”
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“Probably Approximately Correct 
Learning” – PAC Learning

Binary example: sample complexity

Note for 𝜀 = [0,1] ,   1 − 𝜀 ≤ 𝑒−𝜀

What is the chance learned h is bad but classifies training data 
correctly?

If errortrue(h)>𝜀:

• Prob [ h correctly labels x1 ] < 1 − 𝜀 ≤ 𝑒−𝜀

• Prob [ h correctly labels x1 and x2 … and xm ] < 1 − 𝜀 𝑚 ≤ 𝑒−𝑚𝜀

If classifier picks one h* randomly from H

• Prob[h* is bad] = Prob[h1 bad] + … Prob[hn bad] 
= Prob[ errortrue(h*)>𝜀 ] < H 𝑒−𝑚𝜀

6Valiant, 1984

Binary example: sample complexity

Number of data points to reduce chance 
of false classification, enforce 

Prob[errortrue(h)≤ 𝜀] > 1-𝛿

1- Prob[errortrue(h)≤ 𝜀]= Prob[errortrue(h)> 𝜀]< 𝛿

Prob[ errortrue(h*)>𝜀 ] < H 𝑒−𝑚𝜀; stricter bound H 𝑒−𝑚𝜀 < 𝛿

8Valiant, 1984

Binary example: sample complexity

Number of data points to reduce chance 
of false classification, enforce 

Prob[errortrue(h)≤ 𝜀] > 1-𝛿

Prob[ errortrue(h*)>𝜀 ] < H 𝑒−𝑚𝜀 < 𝛿

𝑚 >
1

𝜀
ln

𝐻

𝛿
9Valiant, 1984



4/18/2019

3

VC Dimensions

If H not finite, PAC result seems to require ∞ data points

• Overly conservative

“Dichotomy” – division of set of points S into two subsets

• “Shattering” – set of points is shattered by H iff there exists 
hϵH associated with every possible dichotomy

Vapnik-Chervonenkis dimension VC(H) is size of largest finite 
subset of S that can be shattered by H
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Shattering example3

•H={rectangles: inside is 1, outside is 0} VC(3)

• S={3 specified dots}
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Shattering example

•H={rectangles, inside is 1 outside is 0} VC(3)

• S={4 specified dots}
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Shattering example

•H2={rectangles, inside is 1 outside is 0
inside is 0 outside is 1}

VC(4)

• S={4 specified dots}
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Shattering example

•H={rectangles, inside is 1 outside is 0} VC(4)

• S={4 specified dots}
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Shattering example 4

•H={rectangle, inside is 1 outside is 0}

• S={8 specified dots}
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Shattering example 4

•H={rectangle, inside is 1 outside is 0} H(4)

• S={8 specified dots}
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Shattering infinite points

•H={Linear separators}

• S={Any point in 2D feature
space}

• S={Any point in nD space}
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PAC result with infinite H

VC(H) is size of largest finite subset of X that can be shattered 
by H

• d=VC(H)

•𝑚 ≥ 𝑂
1
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Recall: 𝑚 >
1

𝜀
ln

𝐻

𝛿
for finite size H
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Intuition for PAC result with infinite H

• d=VC(H)

•𝑚 ≥ 𝑂
1
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• Finite H: 𝑚 >
1
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𝑑 log
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𝜀
→ log

𝑘𝑑

𝜀

Can pick h to shatter at most d points in one of two classes

2d meaningfully different classifiers h: |H|~2d
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