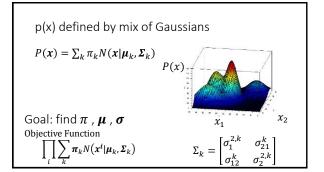
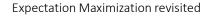

More EM: Gaussian Mixture Models

CISC 5800 Professor Daniel Leeds

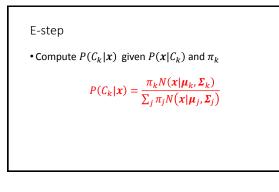
Cluster challenges

- What if clusters overlap?
- What if clusters have different shapes?




Gaussian mixture models

The entire data set seen as a mixture of K clusters: $C_1, \, ... \, C_K$


Prior probabilities:
$$p(C_k) = \pi_k$$
 $\sum_k \pi_k = 1$

Gaussian likelihood for belonging in each cluster: $p(x^i|\mathcal{C}_k) \sim N(x^i|\mu_k, \Sigma_k)$

- E-step: compute expected cluster memberships for all data points
- M-step: compute likelihood parameters for each cluster

M-step	Define: $\gamma_{ik} = P(C_k \mathbf{x})$
• Compute π_k	$N'_{k} = \sum_{i} \gamma_{ik}$ $\pi_{k} = \frac{N'_{k}}{\sum_{j} N'_{j}}$
• Compute μ_k	$\boldsymbol{\mu_k} = \frac{\sum_i \gamma_{ik} x^i}{N'_k}$
• Compute Σ_k	$\sigma_j^{2,k} = \frac{\sum_i \gamma_{ik} (x_j^i - \mu_{j,k})^2}{N'_k}$