4/18/2019

More EM:
Gaussian Mixture Models

CISC 5800
Professor Daniel Leeds

Clustering (generally unsupervised learning)

Group data points based on features
* E.g., k-means, hierarchical
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* Probability each data belongs to each cluster

Cluster challenges

* What if clusters overlap?
* What if clusters have different shapes?

f"‘-“\,h
.® L XS
[
‘o“:‘o’:. 7
\.o°°o\ V3
(X °.2"

\ﬁ.—

Gaussian mixture models
The entire data set seen as a mixture of K clusters:
Cy - Ce

Prior probabilities: p(Cy) = m YT =1

Gaussian likelihood for belonging in each cluster:
p(xHC)~N (x| ux, =)
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p(x) defined by mix of Gaussians

P(x) = X mN (x| pye, Zy)
P(x)-+ -
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Expectation Maximization revisited

*E-step: compute expected cluster memberships
for all data points

* M-step: compute likelihood parameters for each
cluster

E-step
* Compute P(Ci|x) given P(x|Cy) and 7ty
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M-step Define: yi = P(Cy|x)
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