## **Fake Homework**

Presume the following Markov Model



- 1. What is the probability of each of the following state sequences?
  - (a) Farm, House, Farm, Lake
  - (b) Woods, Woods, Farm, House, Farm
  - (c) Farm, Farm, House

Let us expand the above model to be a full HMM using the emission probabilities below:  $\phi_{i,j} = P(o_t = x_i | q_t = s_j)$ :

| d/o             | quack | woof | television | roar | bah | speech |
|-----------------|-------|------|------------|------|-----|--------|
| House (locat 1) | 0.1   | 0.2  | 0.3        | 0    | 0.1 | 0.3    |
| Farm (locat 2)  | 0.3   | 0.2  | 0          | 0    | 0.4 | 0.1    |
| Woods (locat 3) | 0.1   | 0.3  | 0          | 0.6  | 0   | 0      |
| Lake (locat 4)  | 0.7   | 0.1  | 0          | 0    | 0   | 0.2    |

(For reference, you can presume a duck quacks, a dog woofs, a bear roars, a sheep bahs, and a human speaks.)

2. What is the probability of each of the following sequences of states and observations:
(a) P(q<sub>1</sub>=Woods, o<sub>1</sub>=woof, q<sub>2</sub>=House, o<sub>2</sub>=bah)

(b) P(q<sub>1</sub>=House, o<sub>1</sub>=woof, q<sub>2</sub>=Farm, o<sub>2</sub>=speech)

3. Suppose we observe the following sounds in order:

Given the observations above:

(a) Use the Viterbi algorithm to assess the most likely set of states.

As you work on this problem, provide the values for

- (b)  $\delta_1(Farm)$
- (c)  $\delta_2(Woods)$

4. Consider the following HMM. It uses a thermometer to attempt to predict the weather.



We begin with the following estimate for our HMM parameters:

(We COULD actually learn a Gaussian function for the temperature for each state. Here, we'll just do a discrete probability table.)

We receive a new sequence of temperatures and wish to update our HMM parameters.

Sequence: Cold Cold Hot Mild Hot Correct alpha values are in black. Made-up alpha/beta values are in parentheses with ?? before. You will have to find some of the real values below. You should use the made-up value in calculating St values further below.

| $\alpha_t(i)$ |    |          |          |            |            |        |
|---------------|----|----------|----------|------------|------------|--------|
|               | t: | 1        | 2        | 3          | 4          | 5      |
| Snow          |    | ?? (.11) | .08      | 0          | .00011     | 0      |
| Rain          |    | 0.15     | ?? (.04) | .0082      | .0017      | .00049 |
| Sunny         |    | ?? (.08) | 0        | .0056      | ?? (.0033) | .0020  |
| Cloudy        |    | 0.04     | .027     | ?? (.0044) | .0053      | .00030 |

 $\beta_t(i)$ 

| t:     | 1     | 2         | 3        | 4        |
|--------|-------|-----------|----------|----------|
| Snow   | .0067 | .0062     | .13      | .05      |
| Rain   | .0097 | ?? (.011) | .13      | ?? (.08) |
| Sunny  | .0028 | .087      | ?? (.11) | .52      |
| Cloudy | .0062 | .047      | .121     | ?? (.11) |

a) Find the following missing values in the tables above.

| $\alpha_1(Sunny)$ | $\alpha_3$ (Cloudy) | $\alpha_4(Sunny)$  |
|-------------------|---------------------|--------------------|
| $\beta_2(Rain)$   | $\beta_3(Sunny)$    | $\beta_4$ (Cloudy) |

b) What are the values:

| S <sub>2</sub> (cloudy) | S₃(snow,sunny) | S <sub>1</sub> (rain) |
|-------------------------|----------------|-----------------------|
| • • • •                 |                |                       |

Now let us presume the following S values (these are made-up values):  $S_t(i)$ 

| t                    | 1   |    | 2   |    | 3   |    | 4   |    | 5   |
|----------------------|-----|----|-----|----|-----|----|-----|----|-----|
| Snow                 | 0.3 |    | 0.3 |    | 0.1 |    | 0.2 | 2  | 0.1 |
| Rain                 | 0.5 |    | 0.4 |    | 0.3 |    | 0.3 | }  | 0.2 |
| Sunny                | 0.1 |    | 0.1 |    | 0.3 |    | 0.1 |    | 0.4 |
| Cloudy               | 0.1 |    | 0.2 |    | 0.3 |    | 0.4 | 1  | 0.3 |
| S <sub>t</sub> (i,j) |     |    |     |    |     |    |     |    |     |
|                      | t   | 1  |     | 2  |     | 3  |     | 4  |     |
| Rain, Cloudy         |     | .1 |     | .4 |     | .3 |     | .2 |     |
| Sunny, Rain 0        |     |    | 0   |    | 0   |    | 0   |    |     |

c) What are the values below?

| $\Pi_{rain}$  | $\Pi_{cloudy}$      |
|---------------|---------------------|
| Arain, cloudy | $\phi_{mild,sunny}$ |