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Abstract—Deep learning has attracted a great amount of
interest in recent years and has become a rapidly emerging field
in artificial intelligence. In medical image analysis, deep learning
methods have produced promising results comparable to and, in
some cases, superior to human experts. Nevertheless, researchers
have also noted the limitations and challenges of the deep learning
approaches, especially in model selection and interpretability.
This paper compares the efficacy of deep learning and traditional
machine learning techniques in detecting cognitive impairment
(CI) associated with Alzheimer’s disease (AD) using brain MRI
scans. We base our study on 894 brain MRI scans provided by
the open access OASIS platform. In particular, we explore two
deep learning approaches: 1) a 3D convolutional neural network
(3D-CNN) and 2) a hybrid model with a CNN plus LSTM (CNN-
LSTM) architecture. We further examine the performance of
five traditional machine learning algorithms based on features
extracted from the MRI images using the FreeSurfer software.
Our experimental results demonstrate that the deep learning
models achieve higher Precision and Recall, while the traditional
machine learning methods deliver more stability and better
performance in Specificity and overall accuracy. Our findings
could serve as a case study to highlight the challenges in adopting
deep learning-based approaches.

Index Terms—machine learning, deep learning, Alzheimer’s
disease, MRI, brain imaging

I. INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurological
disorder that results in degenerated or dead brain cells. It is
the most common type of dementia, affecting approximately
6.2 million Americans in 2021 [1]. In its early stage, patients
suffer from symptoms such as forgetting recent events or
conversations. Early detection of cognitive impairment (CI)
is critical in identifying individuals at high risk for conversion
to AD, and consequently, providing them with proper care,
management, and potential interventions.

The MRI scan, which reveals the brain’s anatomic structure,
is widely used to identify the loss of brain mass associated with
Alzheimer’s disease and other dementias. However, accurate
interpretation of brain MRI scans requires years of training
and experience because other conditions such as tumors,
hemorrhage, stroke, and hydrocephalus can masquerade as
Alzheimer’s disease. With the latest advances in computer
vision, researchers have resorted to automatic models to detect
brain abnormalities associated with AD. We give a brief survey
of work in this domain in Section II.

In recent years, deep learning has attracted a great amount
of interest. In medical image analysis, deep neural networks

have been successfully applied to various clinical applications,
including in-scanner head motion detection [2], brain MRI
image artifacts reduction [3], and bone X-ray abnormality
detections [4]. Nevertheless, researchers are starting to assess
the limitations and challenges of the deep learning approaches
[5]–[8]. Traditional machine learning approaches typically
need to first perform feature engineering to obtain effective and
robust features before building predictive models. On the other
hand, deep learning models rely on their model structures to
simultaneously perform feature extraction and model training,
which could lead to inferior results compared to models lever-
aging information generated by some mature feature extraction
methodologies. Furthermore, the exceedingly large hypothesis
space arising from a deep model’s expressive power makes the
model selection a challenging task and likely to result in only
substandard solutions.

Our study compares the efficacy of deep learning models
and traditional machine learning algorithms in detecting cogni-
tive impairment (CI) based on brain MRI scans. Our objective
is to build effective binary classification models to classify
subjects as cognitively normal (CN) or cognitively impaired,
according to the clinical dementia ratings (CDR) provided by
the domain experts. For the deep learning models, we explore a
3D convolutional neural network (CNN) model and a hybrid
CNN plus LSTM model, in which the convolutional layers
serve the purpose of feature extraction and the LSTM layers
exploit the temporal dependencies of the MRI slices. The 3D
CNN model operates directly on the 3D MRI scans, and the
CNN-LSTM model operates on 2D slices of three anatomical
planes. For the traditional machine learning approaches, we in-
vestigate five established algorithms, i.e., Decision Trees (DT),
Random Forest (RF), Neural Network (NN), Support Vector
Machine (SVM), and Naive Bayes (NB). These algorithms
operate on 195 volumetric features extracted from individual
MRI scans using the FreeSurfer software.

The contribution of our research is twofold: first, we investi-
gate effective algorithms to automatically classify cognitively
impaired patients from healthy controls using brain MRI scans.
Second, we compare the performance of deep learning and
traditional machine models and highlight some challenges
associated with adopting deep learning-based approaches.



TABLE I
CDR STATISTICS OF MRI SCANS

CDR Count Max Age Min Age Mean Age
0.0 607 97 42 70.08
0.5 209 91 46 70.18
1.0 72 91 43 67.03
2.0 6 76 50 66.63

II. RELATED WORK

Cognitive impairment (CI) leads to an increased risk of
developing Alzheimer’s disease (AD). Automated detection of
brain atrophy through MRI is an active research area. In earlier
studies, Plant et al. developed a novel data mining framework
in combination with three different classifiers (SVM, Bayes
statistics, and VFI) to predict the conversion from CI to AD
based on MRIs [9]. Their best model achieved 75% accuracy
for the prediction of the conversion from mild CI to AD.
Trambaiolli et al. used Support Vector Machines (SVM) to
search patterns in electroencephalography (EEG) epochs to
differentiate AD patients from healthy controls. Their results
obtained from analysis of EEG epochs were accuracy 79.9%
and sensitivity 83.2%. The analysis considering the diagnosis
of each individual patient reached 87.0% accuracy and 91.7%
sensitivity. Zhang et al. proposed a novel classification system
to distinguish among elderly subjects with Alzheimer’s disease
(AD), mild cognitive impairment (MCI), and normal controls
(NC) [10]. In particular, they constructed a kernel support
vector machine decision tree (kSVM-DT), which achieves
80% classification accuracy.

In recent years, there has been a rapid growth of deep
learning-based approaches in AD-related studies. These mod-
els can be further classified into three categories depending
on the type of backbone neural network adopted in the model
architecture. The first category consists of approaches based
on vanilla convolutional neural networks (CNN) [11]). CNN is
the most popular underlying structure adopted by researchers,
attributing to its proficiency in extracting image features. The
other two categories are recurrent neural network (RNN) based
and Generative Adversarial Network (GAN) based approaches.
For example, Lin et al. designed a deep learning approach
based on convolutional neural networks (CNN) to predict mild
CI to AD conversion with magnetic resonance imaging (MRI)
data [12]. Their approach achieved an accuracy of 86.1% in
leave-one-out cross-validations while keeping a good balance
between the sensitivity and specificity. Cui et al. proposed an
RNN-based longitudinal analysis for diagnosis of Alzheimer’s
disease [13]. Their results achieved a classification accuracy of
91.33% in detecting AD against normal controls and 71.71%
for progressive mild CI vs. stable mild CI. Han et al. proposed
a two-step method using GAN-based multiple adjacent brain
MRI slice reconstruction to detect AD at various stages [14].
Their approach is fully unsupervised, which also discover and
alert any anomalies including rare disease.

Although deep learning models have brought unprecedented
potential in automatic disease diagnosis using MRI images,
researchers have noted the limitations and challenges associ-

 

Fig. 1. Sample MRI Images from the OASIS dataset. Red boxes
indicated extracted hippocampus regions for our study, viewed on
sagittal (left), transverse (middle), and coronal (right) planes.

ated with these approaches [5]–[8]. As Bhatt et al. pointed
out, from the literature study, it has been found that most of
the DL models are application- or equipment-dependent. Most
of the authors did not address the reason for the selection
of DL models such as CNN or RNN. Furthermore, there are
many parameters and framework tuning in the model training
process, making the model selection challenging even for
experienced researchers.

III. MATERIALS
A. Data

As mentioned in Section I, our study leverages the OASIS-3
dataset, which is the latest release in the Open Access Series of
Imaging Studies (OASIS) hosted by ADRC [15]. The dataset
contains over 2000 MR sessions from 1098 participants col-
lected over the course of 15 years. To conduct our comparison
study, we selected scans that have accompanying volumetric
segmentation files produced through FreeSurfer processing.
Furthermore, to reduce data noise, we filtered out scans that
are not of standard size (i.e., 256x256x176). As a result, we
retained a total of 897 scans for our study.

We created our class labels using the clinical dementia
rating (CDR) scores [16]. CDR is a 5-point scale used to
characterize the following six domains of cognitive and func-
tional performance applicable to Alzheimer’s disease and re-
lated dementias: Memory, Orientation, Judgment and Problem
Solving, Community Affairs, Home and Hobbies, and Personal
Care. Specifically, values 0, 0.5, 1, 2, 3 are used to indicate no,
very mild, mild, moderate, and severe dementia, respectively.
Table I presents the CDR statistics of our dataset. In our
study, we divide the patients into two categories for a binary
classification task: cognitively normal (CN) with CDR=0 and
cognitively impaired (CI) with CDR>0.

B. Data Preprocessing for the Deep Learning Models

Since 3D convolution is computationally expensive and
CI is known to be affecting the hippocampus area [17], we
followed a similar process as Lin et al. [12] and focused only
on the hippocampus region. To this end, we first aligned the
scans using the Flirt software provided with FSL [18] and then
retained only the temporal lobe regions by removing the rest
sections to reduce the noise and computational cost for the
3D-CNN model. Consequently, the 3D input to our model is
extracted from coordinates (50:80, 90:130, 110:125) in each
scan. Figure 1 presents sample images viewed on the three
anatomical planes. The red boxes indicate the regions selected
for our study.
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Fig. 2. Deep learning Architectures. (a) 3D-CNN (b) CNN-LSTM

C. Data Preprocessing for the Traditional Machine Learning
Models

Using data processing scripts provided by OASIS, we
obtained five tables for our dataset, i.e., a table of white matter
parcellation volumes, two tables of cortical parcellation for
each of the left and right hemispheres, and two tables of the
average thickness of each cortical parcellation. We join the
five tables using unique MRI session IDs and extracted 205
features. Lastly, we cross referenced the 205 features with the
FreeSurfer variables provided by the OASIS-3 Data Dictionary
and retained 188 brain volumetric attributes as the predictive
features for the traditional machine learning models.

IV. METHODS

We explored five established traditional ML methods for
our classification task: SVM, Decision Trees, Random Forest,
Neural Netork, and Naive Bayes. For the deep learning mod-
els, we investigated a 3D and a 2D hybrid models as illustrated
in Sections IV-A and IV-B.

A. 3D-CNN Model

Figure 2(a) presents the architecture of our 3D-CNN model.
It is worth noting that, due to expensive computational cost
and high expressive power, 3D convolutional models typically
do not need as deep structure as 2D CNNs. In our model,
we employed two Conv3D layers with 16 and 32 filters,
respectively. Both convolutional layers utilized a 3x3x3 kernel
and the ReLU activation function. A Maxpooling3D layer with
a 2x2x2 kernel follows each of the convolutional layers. Batch
normalization is applied after each Maxpooling3D. The final
flattened layer contains 1,280 units, which are connected to
a sequence of dense layers with 1,024, 512, and 128 units,
respectively. A 50% dropout layers is added after each dense
layer to regularize overfitting. The final output layer has two
units activated using the softmax function, representing our
two classes.

B. CNN-LSTM Model

Our CNN-LSTM model is a hybrid approach to capture the
spacial and temporal characteristics of sequential MRI images
along the three anatomical planes (i.e., sagittal, transverse,
and coronal). We converted a 3D MRI scan into sequential
2D slices along the three anatomical planes and trained a sub

model for images from the same plane. The final CNN-LSTM
model’s output is an ensemble of the predictions of three sub-
models.

Figure 2(b) presents the architecture of our CNN-LSTM
approach. The model starts with 4 TimeDistributed Conv2D
layers, and each is followed by a max pooling layer and a
batch normalization layer. These convolutional layers serve
the purpose of extracting high-level predictive features from
the MRI images. The final flatten layer from the CNN block
is fed as the input to the LSTM model, which consists of two
LSTM blocks followed by two dense layers.

V. EXPERIMENTAL RESULTS

A. Model Training

Due to the high computational cost associated with training
deep learning models, we trained our 3D-CNN and CNN-
LSTM models using an 8:1:1 split for the training, validation,
and test, respectively. For the traditional machine learning
models, we conducted our experiments using a 10-fold cross-
validation and reported the average model performance on
the test folds. All models were regularized using standard
techniques, including batch normalization, L2 regularization,
and dropout, to reduce overfitting.

We observe in Table I that our data is imbalanced with a
class 1 to class 0 ratio of 607:287. To address this issue, we
will incorporate cost-sensitive learning in our model training.
Specifically, misclassification of the minority instances will
incur a more significant penalty than that of the majority ones
in the model training process. The optimal class weights were
selected as hyper-parameters using either the validation set
(i.e., for DL models) or a nested 10-fold cross-validation on
the training data (i.e., for traditional ML models).

We trained our deep learning models on a PowerEdge R740
Linux machine with two Xeon 2.60GHz CPUs (12 cores),
192GB of memory, and a 32GB NVIDIA Tesla V100 GPU.
The training converged in approximately 24 hours for each
model with a learning rate of 0.0005.

B. Performance Evaluation

Table II presents the main results of our experiments.
We observe that the CNN-LSTM model significantly out-
performed the 3D-CNN model in overall accuracy (3D-
CNN:0.53; CNN-LSTM:0.63), Recall (3D-CNN:0.54; CNN-
LSTM:0.77), Specificity (3D-CNN:0.50; CNN-LSTM:0.56),
and F1 score (3D-CNN:0.62; CNN-LSTM:0.74). 3D-CNN has
slightly better performance in Precision (3D-CNN: 0.74; CNN-
LSTM:0.71). The experimental results suggest that the LSTM
component could be effective in capturing additional predictive
information for our classification task.

Of the five traditional machine learning models, DT, NN,
RF, and SVM exhibit similar and robust performance across
all five evaluation metrics, with overall accuracies in [0.75,
0.76], Precisions in [0.60, 0.63], Recalls in [0.64, 0.68],
Specificities in [0.79, 0.82], and F1 scores in [0.62, 0.64].
The NB model has a noticeably worse performance than the
other four models, especially in Precision and Specificity. One



TABLE II
PERFORMANCE COMPARISON OF DEEP LEARNING AND TRADITIONAL

MACHINE LEARNING APPROACHES

Model Precision Recall Specificity F1 Accuracy

Deep Learning Models
3D-CNN 0.74 0.54 0.50 0.62 0.53

CNN-LSTM 0.71 0.77 0.56 0.74 0.63
Traditional Machine Learning Models

DT 0.62 0.65 0.81 0.63 0.76
NN 0.63 0.64 0.82 0.63 0.76
NB 0.56 0.67 0.75 0.60 0.72
RF 0.61 0.68 0.79 0.64 0.76

SVM 0.60 0.64 0.80 0.62 0.75

explanation is that the volumetric features are not mutually
independent, which violates the Naive Bayes assumption

Comparing the deep learning and traditional machine learn-
ing approaches, we observe that the CNN-LSTM model
demonstrates higher Precision and Recall, but its performance
is unsatisfactory in Specificity (0.56), resulting in a low overall
accuracy (0.63). It is also interesting to note that the CNN-
LSTM model is more proficient at predicting class 1 (i.e., CI,
Recall=0.77) than class 0 (i.e., CN, Specificity=0.56), while
the traditional models showed the opposite quality.

Our experimental results suggest that, for our task, the
traditional machine learning methods exhibit more robust,
stable, and better overall performance than deep learning-
based approaches. Our findings may not be conclusive due to
the limitations in our selection of the deep learning models.
A more exhaustive search may yield more fruitful results,
which highlights the challenge of general deep learning-
based approaches, i.e., the choice of model, both in type
and architecture, is more of an art than science. Given the
highly flexible structure of deep networks and their high
training costs, searching for a suitable model can be time
consuming and expensive. On the other hand, for our particular
task, traditional machine learning models demonstrate overall
superior performance leveraging a mature feature extraction
technique. Although our models’ performance is not perfect,
we feel that the comparison results we have obtained merit
sharing with a wider audience.

VI. CONCLUSION

In this paper, we investigated two deep learning and five
traditional machine learning approaches in detecting cognitive
impairment using brain MRI scans. For the deep learning
models, we explored a 3D-CNN model and a hybrid CNN-
LSTM model. The CNN-LSTM significantly outperformed the
3D-CNN model in four out of the five evaluation metrics,
suggesting its effectiveness in capturing the temporal depen-
dencies in the MRI slices. We built our machine learning
models using 188 volumetric features extracted using the
FreeSurfer software. Although the machine learning models
exhibit lower Precision and Recall than the deep learning
models, they demonstrated superiority in overall accuracy,
Specificity, and reliable stability. The success of the traditional
machine learning algorithms in our study could be due to

our problem’s idiosyncratic nature that makes it particularly
amenable to handling with such methods. The presence of
adequate feature engineering techniques (e.g., FreeSurfer)
could have further helped these methods in tackling the task.
Nevertheless, our findings are consistent with the recognized
challenges in developing deep learning models and cast a
positive light on the value of traditional techniques.
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